Main > MICROFLUIDICS > Org.: USA. CU. (Per F PolyEther) > Work Description

A fluoropolymer that is liquid at room temperature and resistant to organic solvents has been used to fabricate microfluidic devices, which have micrometer-scale fluid channels [J. Am. Chem. Soc., 126, 2322 (2004)]. Chemistry professor Joseph M. DeSimone at the University of North Carolina, Chapel Hill; physics professor Stephen R. Quake at Caltech; and coworkers relied on a photocurable perfluoropolyether-based elastomer to make the devices. Unlike poly(dimethylsiloxane), the material of choice for many microfluidic applications, perfluoropolyethers are resistant to swelling in common organic solvents. The researchers prepared the fluoropolymer by methacrylate functionalization of a commercially available polymer (shown). They then blended the product with a phenylacetophenone and fabricated the devices by exposing layers of the blends to UV radiation. Until now, microfluidic devices for use with organic solvents have been fabricated from silicon and glass using photolithography and etching techniques. The processes are costly, require clean-room conditions, and are labor intensive. "Our developments allow, for the first time, the use of organic solvents in microfluidic devices made from easy-to-use soft-lithographic techniques," DeSimone says.




Work Description's products
This section has no products