RESEARCH |
In 2003, a collaborative team at the Consortium for Functional Glycomics (CFG), which is based at Scripps, introduced arrays in which biotinylated polysaccharides were adsorbed to wells of streptavidin-coated microtiter plates. Later, CFG core unit director Ola Blixt, molecular biology professor and CFG Director James C. Paulson, Wong, and coworkers used robotic printing to create arrays in which natural and synthetic carbohydrates were covalently linked to activated glass slides through simple amino-reactive groups. The CFG arrays now contain more than 275 structurally defined sugars, ranging in size from monosaccharides to decasaccharides, whereas most other glycoarrays have had only up to 50 or so such sugars on them. "Within a month it will be 300, and we're going to continuously expand the arrays," Paulson says. CFG's robotically printed arrays are the most complete and most useful sequence-defined glycoarrays produced so far, Wong notes. For rigorous glycomics studies, however, arrays of at least 600 and ultimately up to several thousand well-defined sugars will be needed, he says. "The limiting factor will be the preparation and constant supply of thousands of saccharides." For the past few years, glycoarrays have been applied to biomedical studies of increasing sophistication. For example, CFG arrays have been used to analyze the specificity of nearly 200 carbohydrate-binding proteins and to profile not only carbohydrate-binding biomolecules but also intact viruses. The newer CFG arrays are also "very well suited for analysis of body fluids, such as human serum, demonstrating that this system could be used in clinical and industrial applications, such as drug discovery and diagnostics," Blixt says. |
Want more information ? Interested in the hidden information ? Click here and do your request. |