PATENT NUMBER | This data is not available for free |
PATENT GRANT DATE | August 31, 2004 |
PATENT TITLE |
Integrated high throughput system for the mass spectrometry of biomolecules |
PATENT ABSTRACT | Described is an affinity microcolumn comprising a high surface area material, which has high flow properties and a low dead volume, contained within a housing and having affinity reagents bound to the surface of the high surface area material that are either activated or activatable. The affinity reagents bound to the surface of the affinity microcolumn further comprise affinity receptors for the integration into high throughput analysis of biomolecules |
PATENT INVENTORS | This data is not available for free |
PATENT FILE DATE | January 15, 2002 |
PATENT PARENT CASE TEXT | This data is not available for free |
PATENT CLAIMS |
What is claimed is: 1. An affinity microcolumn comprising a high surface area material comprising glass, which has high flow properties and a low dead volume, contained within a housing and affinity reagents bound to the surface of the high surface area material, wherein the affinity reagents are either activated or activatable and the high surface area is formed by chemical etching of the surface. 2. The affinity microcolumn according to claim 1 wherein the affinity reagents that are bound to the surface of the high surface material further comprise affinity receptors bound to the affinity reagents. 3. The affinity microcolumn according to claim 2 further comprising a tethering molecule that is activated or activatable and binds the affinity receptors to the affinity reagents. 4. The affinity microcolumn according to claim 2 further comprising an amplification media interposed between the affinity reagents and the affinity receptors, where the amplification media allows better access by an analyte to the affinity receptors than in the absence of the amplification media. 5. The affinity microcolumn according to claim 4 wherein the amplification media comprises a biological polymer. 6. The affinity microcolumn of claim 1 wherein the housing is a micropipette. 7. The affinity microcolumn according to claim 1 further comprising an amplification media that is activated or activatible and is interposed between the affinity reagents and the affinity receptors, where the amplification media allows a high density of affinity receptors to be bound to the affinity reagents than in the absence of the amplification media. 8. The affinity microcolumn according to claim 7 wherein the amplification media comprises a biological polymer. 9. The affinity microcolumn according to claim 1 wherein the high surface area material comprises porous glass. 10. The affinity microcolumn according to claim 9 wherein the porous glass comprises a porous glass molecular trap that is formed by molding. -------------------------------------------------------------------------------- |
PATENT DESCRIPTION |
FIELD OF THE INVENTION The present invention is related to the field of proteomics. More specifically, the present invention is a method and device for rapid identification and characterization of biomolecules recovered from biological media. Additionally, the present invention includes the ability to process numerous different samples simultaneously (high throughput analysis). BACKGROUND OF THE INVENTION Recent advances in human genome sequencing have propelled the biological sciences into several new and exciting arenas of investigation. One of these arenas, proteomics, is largely viewed as the next wave of concerted, worldwide biological research. Proteomics is the investigation of gene products (proteins), their various different forms and interacting partners and the dynamics (time) of their regulation and processing. In short, proteomics is the study of proteins as they function in their native environment with the overall intention of gaining a further, if not complete, understanding of their biological function. Such studies are essential in understanding such things as the mechanisms behind genetic disorders or the influences of drug mediated therapies, as well as potentially becoming the underlying foundation for further clinical and diagnostic analyses. There are several challenges intrinsic to the analysis of proteins. First, and foremost, any protein considered relevant enough to be analyzed resides in vivo in a complex biological environment or media. The complexity of these biological media present a challenge in that, oftentimes, a protein of interest is present in the media at relatively low levels and is essentially masked from analysis by a large abundance of other biomolecules, e.g., proteins, nucleic acids, carbohydrates, lipids and the like. Technologies currently employed in proteomics are only able to overcome this fundamental problem by first fractionating the entire biological media using the relatively old technology of two-dimensional (2D) sodium dodecyl sulphate--polyacrylamide gel electrophoresis (SDS-PAGE), wherein numerous proteins are simultaneously migrated using a gel medium, in two dimensions as a function of isoelectric point and molecular size. In order to ensure migration in a predictable manner, the proteins are first reduced and denatured, a process that destroys the overall structures of the proteins and voids their functionality. Present day state-of-the-art proteomics involves the identification of the proteins separated using 2D-PAGE. In this process, gel spots containing separated proteins are excised from the gel medium and treated with a high-specificity enzyme (most commonly trypsin) to fragment the proteins. The resulting fragments are then subjected to high-accuracy mass analysis using either electrospray ionization (ESI) or matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometries (MS). The resulting data, in the form of absolute molecular weights of the fragments, and knowledge of the enzyme specificity are used in silico to search genomic or protein databases for information correlating to the empirical data on the fragments. Analytical methods and searching protocols, refined over the past seven years, have evolved to a point where only a few proteolytic fragments, determined with high mass accuracy, are needed to identify a gel-separated protein as being present in a certain gene. However, identification of the gene producing a protein of interest is only the first step in the overall, much larger process of determining protein structure/functionality. Numerous questions that arise cannot be answered by the 2D-PAGE/MS approach. One major issue deals with the primary structure of the protein. During the commonly practiced identification process, at most, fifty percent of the protein sequence is viewed, leaving at least fifty percent of the protein unanalyzed. Given that potentially numerous splice variants, point mutations, and post-translational modifications exist for any given protein, many variants and modifications present within a protein will ultimately be missed during the identification process--many of which are responsible for disease states. As such, proteins are not viewed in the full structural detail needed to differentiate (normal) functional variants form (disease-causing) dysfunctional variants. Furthermore, current identification processes make no provision for protein quantitation. Because many disease states are created or indicated by elevated or decreased levels of specific proteins and/or their variants, protein quantitation is a very important component of proteomics. Presently, protein quantitation from gels is performed using staining approaches that inherently have a relatively high degree of variability, and thus inaccuracy. The staining approaches can be replaced using isotope-coded affinity tags (ICAT) in conjunction with mass spectrometric quantification of proteolytic fragments generated from 2D-PAGE. However, the ICAT approach is still subjective to the aforementioned protein variants in that protein variants will yield mass-shifted proteolytic fragments that will not be included in the quantification process. Likewise, other approaches, such as ELISA (enzyme-linked immunosorbant assay) and RIA (radioimmunoassay), are equally subjected to the complications of quantifying a specific protein in the presence of its variants. Lacking the ability to resolve a target protein from its variants, these techniques will essentially monitor all protein variants as a single compound; a process that is oftentimes misleading in that a disease may be caused/indicated by elevated level of only a single variant, not the cumulative level of all the variants. Moreover, the 2D-PAGE/MS approaches make no provision for exploring protein-ligand (e.g., other proteins, nucleic acids or compounds of biological relevance) interactions. Because denaturing conditions are used during protein separation, all protein-ligand interactions are disrupted, and thus are out of the realm of investigation using the identification approach. Separate other approaches focus specifically on the analysis of protein-ligand interactions. The most frequently used of these are the yeast two-hybrid (Y2H) and phage display approaches, which use in vivo molecular recognition events to trigger the expression of genes that produce reporter proteins indicating a biomolecular interaction, or selectively amplify high-affinity binding partners, respectively. Other instrumental approaches rely on biosensors utilizing universal physical properties or tags (e.g., surface plasmon resonance or fluorescence) as modes of detection. The two major limitations of these approaches is that they are generally slow and that interacting partners pulled from biological media are detected indirectly, yielding no specific or identifying information about the binding partner. Lastly, none of the aforementioned approaches are favorable to large-scale, high-throughput analysis of specific proteins, their variants and their interacting partners in large populations of subjects. All of the aforementioned approaches require several hours (2D-PAGE) to several weeks (Y2H) to perform on a single sample. As such, time and monetary expenses preclude application to the hundreds-to-thousands of samples (originating from hundreds-to-thousands of individuals) necessary in proteomic, clinical, and diagnostic applications. To date, there are no universal, integrated systems capable of the high-throughput analysis of proteins for all of the aforementioned reasons. Thus, there exists a pressing need for new and novel technologies able to analyze native proteins present in their natural environment. Encompassed in these technologies are: 1) the ability to selectively retrieve and concentrate specific proteins from biological media for subsequent high-performance analyses, 2) the ability to quantify targeted proteins, 3) the ability to recognize variants of targeted proteins (e.g., splice variants, point mutations and posttranslational modifications) and to elucidate their nature, 4) the capability to analyze for, and identify, ligands interacting with targeted proteins, and, 5) the potential for high-throughput screening of large populations of samples using a single, economical platform. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference. Although the present invention has been described in some detail by way of illustration and example for purposes of clarity and understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. SUMMARY OF INVENTION It is an object of the present invention to provide an integrated system capable of selectively retrieving and concentrating specific biomolecules from biological media for subsequent high-performance analyses, quantifying targeted proteins, recognizing variants of targeted biomolecules (e.g., splice variants, point mutations and post-translational modifications) and elucidating their nature, analyzing for, and identifying, ligands interacting with targeted biomolecules, and high-throughput screening of large populations of samples using a single, unified, economical, multiplexed and parallel processing platform. It is another embodiment of the present invention to provide an integrated system that comprises molecular traps, such as affinity microcolumns, derivatized mass spectrometer targets, mass spectrometers capable of multi-sample input and robotics with processing/data analysis interactive database software that accomplish the high throughput analysis. It is yet another object of the present invention to provide individual components for the integrated system, such as molecular traps, derivatized targets and the like. It is a further object of the present invention to provide a high throughput embodiment of the present invention that uses robotics for serial preparation and parallel processing of a large number of samples simultaneously. It is yet a further object of the present invention to provide methods and processes for use of the individual components and the integrated system in biological applications. It is still yet another object of the present invention to provide a device and method for the identification of point mutations and variants of analytes using an integrated system using high throughput analysis. The novel features that are considered characteristic of the invention are set forth with particularity in the appended claims. The invention itself, however, both as to its structure and its operation together with the additional objects and advantages thereof will best be understood from the following description of the preferred embodiment of the present invention when read in conjunction with the accompanying drawings. Unless specifically noted, it is intended that the words and phrases in the specification and claims be given the ordinary and accustomed meaning to those of ordinary skill in the applicable art or arts. If any other meaning is intended, the specification will specifically state that a special meaning is being applied to a word or phrase. Likewise, the use of the words "function" or "means" in the Description of Preferred Embodiments is not intended to indicate a desire to invoke the special provision of 35 U.S.C. .sctn.112, paragraph 6 to define the invention. To the contrary, if the provisions of 35 U.S.C. .sctn.112, paragraph 6, are sought to be invoked to define the invention(s), the claims will specifically state the phrases "means for" or "step for" and a function, without also reciting in such phrases any structure, material, or act in support of the function. Even when the claims recite a "means for" or "step for" performing a function, if they also recite any structure, material or acts in support of that means of step, then the intention is not to invoke the provisions of 35 U.S.C. .sctn.112, paragraph 6. Moreover, even if the provisions of 35 U.S.C. .sctn.112, paragraph 6, are invoked to define the inventions, it is intended that the inventions not be limited only to the specific structure, material or acts that are described in the preferred embodiments, but in addition, include any and all structures, materials or acts that perform the claimed function, along with any and all known or later-developed equivalent structures, materials or acts for performing the claimed function. DETAILED DESCRIPTION OF THE DRAWINGS FIG. 1 is an illustration of the MSIA procedure. Analytes are selectively retrieved from solution by repetitive flow through a receptor-derivatized affinity pipette. Once washed of the non-specifically bound compounds, the retained species are eluted onto a mass spectrometer target or target array using a MALDI matrix (in the preferred embodiment). MALDI-TOF MS then follows, with analytes detected at precise m/z values. The analyses are qualitative by nature but can be made quantitative by incorporating mass-shifted variants of the analyte into the procedure for use as internal standards. FIG. 2 .beta..sub.2 -microglobulin MSIA screening of biological fluids. Samples were prepared by dilution of the biological fluid with HBS (H.sub.2 O for standalone MALDI-TOF) and repetitive flow incubation through the affinity pipette. Affinity pipettes were washed using HBS and water before elution of retained compounds directly onto a mass spectrometer target using ACCA (saturated in 1:2, ACN:H.sub.2 O; 0.2% TFA). (A) Human tears. (B) Human plasma. (C) Human saliva--the saliva required an additional rinse with 0.05% SDS (in water) to reduce non-specific binding. (D) Human urine. In all cases, .beta..sub.2 m was efficiently retrieved from the biological fluids using the flow-incubate/rinse procedure. The masses determined for the .beta..sub.2 m (using external calibration) were within .about.0.1% of the calculated value (MW.sub.calc =11,729.7; MW.sub.tears =11,735; MW.sub.plasma =11,734; MW.sub.saliva =11,742; MW.sub.urine =11,735). Illustrating diverse biological fluid screening by MSIA for a directed, rapid, sensitive and accurate analysis. FIG. 3a Quantitative .beta..sub.2 m-MSIA--working curve. Representative spectra of data used to generate the working curve. Human .beta..sub.2 m concentrations of 0.01-1.0 mg/L were investigated. Equine .beta..sub.2 m (MW=11,396.6) was used as an internal standard. FIG. 3b Working curve generated using the data represented in FIG. 3a. The two-decade range was spanned with good linearity (R.sup.2 =0.983) and low standard error (.about.5%). Error bars reflect the standard deviation of ten repetitive 65-laser shots spectra taken from each sample. These figures illustrate quantitative MSIA performed via .beta..sub.2 m-affinity pipettes. FIG. 4 Quantitative .beta..sub.2 m-MSIA screening. Human urine samples from five individuals were screened over a period of two days. The average value determined for healthy individuals (10-samples; 4-individuals (3 male; 1 female) ages 30-44 years) was 0.100.+-.0.021 mg/L. The level determined for an 86-year old female with a recent urinary tract infection indicated a significant increase in .beta..sub.2 m concentration (3.23.+-.0.072 mg/L). FIG. 5 MSIA showing elevated level of glycosylated .beta..sub.2 m in a 86-year old female (dark gray). During MSIA, a second signal is observed at .DELTA.m=+161 Da, indicating the presence of glycosylated .beta..sub.2 m. MSIA is able to adequately resolve the two .beta..sub.2 m forms, resulting in a more accurate quantification of the nascent .beta..sub.2 m and possible quantification of the glycoprotein. Such differentiation is important considering that the two .beta..sub.2 m forms originate from (or are markers for) different ailments. MSIA of a healthy individual, showing little glycosylation, is given for comparison (light gray). FIG. 6 Surface directed MSIA for defined biological fluid/.beta..sub.2 -microglobulin specificity. Use of polyclonal anti-.beta..sub.2 m affinity pipettes linked via carboxymethyl dextran amplification or amine base support chemistries enable differentiation of specifically bound versus non-specifically bound compounds during biological fluid/MSIA. Samples were prepared from biological fluid and used as in FIG. 2. (A) Human plasma. (B) Human plasma through CMD amplified .beta..sub.2 m affinity pipette. (C) Human plasma through amine/glutaraldehyde coupled .beta..sub.2 m affinity pipette. Direct analysis of human plasma spectra (top spectrum) lacks .beta..sub.2 m mass signature (MW.sub.plasma =11734). CMD amplified affinity pipette chemistry target .beta..sub.2 m while exhibiting non-specifically bound compounds (middle spectrum). Only in the last case was .beta..sub.2 m efficiently retrieved from the biological fluid with low non-specifically bound compounds (bottom spectrum). This illustrates a preferred surface in the directed analysis of blood born biological fluid biomarkers using discreet affinity pipettes for specific mass detection. FIG. 7a is a schematic illustration describing the integrated system for high-throughput analysis of biomolecules from biological media. FIG. 7b is an expanded schematic illustration of the used station, which is comprised of microcolumn-integrated robotics having multiple positions for chemical modification, microcolumn functionalization, biological fluids analysis, transfer and the like. FIG. 8 is an illustration of a high-throughput semi-quantitative analysis of .beta..sub.2 m MSIA. .beta..sub.2 m from human plasma samples using the integrated system and methods described in the present invention. FIG. 9 shows bar graph analysis of the data shown in FIG. 8. Each spectrum shown in FIG. 8 was normalized to the equine .beta..sub.2 m signal through baseline integration, and the normalized integral for the human .beta..sub.2 m signal determined. All .beta..sub.2 m integrals from spectra obtained from sample from the same individual were averaged and the standard deviation calculated. In the same way, the integrals for the samples spiked with 0.5 and 1.0 .mu.L solution of 10.sup.-2 mg/mL .beta..sub.2 m were calculated and averaged. Plotted in this figure are the average values of the normalized human .beta..sub.2 m integrals for the samples from the six individuals and the spiked samples. The bar graph clearly establishes increased .beta..sub.2 m levels in the spiked samples, illustrating the value of the high-throughput semi-quantitative analysis performed with the system and methods described in this invention in establishing increased .beta..sub.2 m levels in human blood that are associated with various disease states. FIG. 10 is an illustration of a high-throughput quantitative analysis of .beta..sub.2 m from human plasma samples using the integrated system and methods described in this invention. FIG. 11a and 11b illustrate the construction of a calibration curve from the data for the standard samples shown in FIG. 10 and for the purpose of determining the .beta..sub.2 m concentrations in the human plasma samples screened via the high-throughput analysis using the integrated system and methods described in this invention. FIG. 12 shows bar analysis of the data shown above using the standard curve constructed above. Each spectrum for the 88 samples in FIG. 10 was normalized to the equine .beta..sub.2 m signal through baseline integration, and the normalized integral for the human .beta..sub.2 m signal determined. All human .beta..sub.2 m integrals for the same individual were averaged and the standard deviation calculated. The values of the averaged integrals were substituted in the equation derived from the standard curve, FIG. 11b, and the concentration of human .beta..sub.2 m was calculated for each individual. The range of concentrations determined was from 0.75 to 1.25 mg/L. FIG. 13 is an illustration of a qualitative high-throughput screening of transthyretin (TTR) for posttranslational modification (PTM) and point mutations (PM) using the integrated system and methods described in this invention. FIG. 14 illustrates identification of the posttranslational modifications and point mutations observed in the high-throughput TTR analysis using the integrated system and methods described in this invention. FIG. 15 illustrates the identification of point mutation via incorporation of derivatized mass spectrometer target platforms in the system and methods described in this invention. FIG. 16 illustrates the use of a high-resolution reflectron mass spectrometry as part of the integrated system and methods described in this invention in determining the identity of the point mutations detected in the analysis of the plasma samples shown in FIG. 15. FIG. 17a Concerted biofluid phosphate analysis-chelator affinity pipettes with alkaline phosphatase functionalized target array. (1) Human whole saliva (10 .mu.L diluted 10 fold). (2) sample in (1) through EDTA/Ca.sup.2+ affinity pipettes. (3) sample in (2) eluted via 10 mM HCl addition and stamped onto AP-BRP incorporating 50 mM borate buffer pH=10 buffer exchange and fifteen minute phosphate digest (50.degree. C.). (4) sample in (3) with extended thirty minute digest. Direct analysis of ten by dilution of human saliva significantly lacks proline rich protein-1 (PRP-1), the serine modified phosphate rich protein of interest. FIG. 17b Spectrum in (2) shows EDTA/Ca.sup.2+ affinity pipette capture of two phosphate rich proteins, PRP-1 and PRP 3. Mass signature of dephosphorylation is evident in spectral trace (3) and complete in (4). Illustrating multi-analyte detection accompanied by partial and complete dephosphorylation of phospho-proteins captured/digested out of biological fluid for post-translational analysis (i.e., phosphorylation events. FIG. 18 MSIA delineation of multi-protein complex between retinol binding protein (RBP) and transthyretin (TTR). Polyclonal anti-RBP affinity pipettes were formed via glutaraldehyde mediated amine base support surface coupling. Human plasma was prepared and used as in FIG. 8. MSIA shows in vivo affinity retrieval of RBP (MW=21,062 Da) and complexed TTR (MW=13,760 Da). Illustrating protein interactions exiting in native protein complexes. FIG. 19 Simultaneous rapid monitoring of multi-analytes for relative abundance. Amine activated, polyclonal anti-.beta..sub.2 m/CysC/TTR affinity pipettes are used to rapidly capture their respective analytes out of human plasma (50 fold diluted in HBS). The figure illustrates one of the uses for multi-antibody affinity pipettes to .beta..sub.2 m, CysC and TTR to rapidly monitor for biological fluid level modulation and to quantify a modulated protein event from their normalized relative abundance. The figure illustrates one of the uses of affinity pipettes for monitoring potential .beta..sub.2 m/CysC levels in acute phase of viral infection (ca. AIDS) or fibril formation from .beta..sub.2 m or TTR. FIG. 20 Rapid monitoring of extended multi-analyte affinity pipettes. Combinations/individual polyclonal antibody affinity pipettes incorporating .beta..sub.2 m, TTR, RBP, Cystatin C or CRP capture respective analytes from human plasma (50 fold dilution in HBS). This figure illustrates one of the uses for multi/single-antibody affinity pipettes to .beta..sub.2 m, CysC, TTR or CRP to rapidly monitor for biological fluid level modulation and to potentially quantify a modulated protein event from their normalized relative abundance. This figure illustrates another of the uses of affinity pipettes for monitoring potential .beta..sub.2 m/CysC levels in acute phase of viral infection (ca. AIDS) or fibril formation from .beta..sub.2 m or TTR. FIG. 21 Mass spectrometry target arrays. (A) Plateau target capable of confining sample through meniscus action. (B) Contrast design capable of confining sample through hydrophobic/hydrophilic action. (C) Insert targets for use with smaller sampling loads, expensive reagents, or sample transfers. DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides an integrated high throughput system capable of selectively retrieving and concentrating specific biomolecules from biological media for subsequent high-performance analyses, such as identification of biomolecules, quantifying targeted biomolecules, recognizing variants of targeted biomolecules (e.g., splice variants, point mutations and post-translational modifications) and elucidating their nature, such as analyzing for, and identifying, ligands interacting with the targeted biomolecules, and high-throughput screening of large populations of samples using a single, unified, economical, multiplexed and parallel processing platform. The preferred embodiment of the integrated system comprises molecular traps, such as affinity microcolumns, processing stations, and derivatized mass spectrometer target arrays, which may be omitted in non-preferred embodiments, that work with mass spectrometers capable of single or multi-sample input and using processing/data analysis interactive databases. The present invention also includes methods and processes for use of the individual components and the integrated system in biological applications. Furthermore, the preferred embodiment of the present invention provides for the preparation and/or processing of multiple separate devices and/or samples to accomplish high throughput analysis. A major component of the system of the present invention is the isolation or retrieval of specific analytes from their surrounding biological media in a biological sample. This is accomplished using a molecular trap. In a preferred embodiment of the molecular trap, the retrieval process entails repetitively flowing the biological sample through devices that have affinity receptors located on surfaces with a high surface area content. The affinity receptors are selected to capture specific analytes. In the high throughput embodiment, these molecular traps are formed into miniature columns, affinity microcolumns, thereby allowing numerous molecular traps to be located side-by-side and taking up minimal amount of physical volume. In a preferred form of the side-by-side embodiment, the numerous molecular traps are contained within a unitary component, such as a manifold or block of material. In this form the manifold contains numerous microchannels that house the molecular traps. The molecular trapping process is accomplished by allowing sufficient physical contact between the affinity receptors located on the molecular traps and the analyte contained in the biological sample. The affinity receptors capture, or isolate, the specific analytes using an affinity interaction between the affinity receptors and the specific analytes. After the specific analytes are captured, residual or non-captured compounds are washed free of the molecular traps using a series of rinses. The capture and rinse processes result in the concentrating of the specific analytes into the low dead-volume of the affinity microcolumns. After the specific analytes have been captured, they are eluted from the molecular traps using a small volume of a reagent capable of disrupting the affinity interaction. The eluted specific analytes are then stamped directly onto a mass spectrometry target platform for either mass spectrometry or for further processing, e.g., enzymatic/chemical modification via utilization of bioreactive MS target arrays, followed by subsequent preparation for mass spectrometry. Automated mass spectrometry then follows with either the specific analyte or modified fragments detected with high precision. Software capable of recognizing differences between samples, or from a standard, is used to aid in the analysis and organization into database of the large numbers of samples. Alternately, instead of stamping the eluted specific analytes onto a mass spectrometry target, the specific analytes may be eluted directly into an electrospray ionization mass spectrometer by using the molecular traps as a component in the sample introduction device, such as the needle of an electrospray mass spectrometer. The high throughput embodiment of the present invention uses robotics for serial preparation and parallel processing of a large number of samples. The use of microcolumns in capturing the specific analytes enables an arrayed format, as mentioned above, that is ideal for such high-throughput processing since it minimizes the physical volume and/or area occupied by the microcolumn array. Use of affinity microcolumns with appropriately configured robotics allows multiple samples to be prepared, processed, start-to-finish, simultaneously on a unified platform thereby enabling high throughput of samples. Specifically, all capture, separation and elution steps are performed within the microcolumns managed by the robotics system or systems. This is in contrast to the use of other affinity capture methods (using, e.g., beaded media) where mechanical/physical means (e.g., centrifugation, magnetic or vacuum separation) are used to separate the specific analyte from the biological fluid and rinse buffers. Oftentimes this physical separation needs to be performed singularly, resulting in the disruption of a parallel processing sequence, as well as the ordering of the array. Because these mechanical/physical means are not necessary when using the microcolumns, parallel-processing sequences can be used without disruption and the integrity of an ordered spatial array is maintained throughout the entire process. Most conveniently, multiple preparations/analyses are performed serially and in parallel using robotics fitted to commonly used spatial arrays, e.g., 4-, 8-, 16-, 48-, 96-, 384 or 1536 well micro-titer plate formats. Individual Components Sample Modification/Preparation In all of the below described embodiments, it may be desired that the biological media or the target analyte be modified or prepared either prior to affinity action or after affinity capture, but before elution onto a target or target array. Example modifications or preparations include, but are not limited to, reduction, labeling or tagging, in situ digests, partial on-surface digestion/modification, pH adjustments, and the like. Molecular Traps In one embodiment of the invention, molecular traps are microcolumnar devices that have bound affinity receptors. The molecular trap is chemically modified, such as by treatment with an amino-silanization reagent and subsequently activated for affinity receptor linkage using any one of a number of derivatization schemes. The use of affinity microcolumns overcomes the disadvantages entailed in performing affinity capture by other means. Specifically, affinity microcolumns, as described herein, are scaled to mass spectrometric analyses that have only become available in the last ten years. Prior to the advent of MALDI-TOF and ESI mass spectrometries, mass spectrometric analyses of polypeptides (if they could be performed at all) required amounts of analyte on the order of nanomoles, which, if isolated via affinity capture, required milliliter volumes of reagent containing bound receptors and, oftentimes, liter volumes of biological media. Given the low- to sub-femtomole sensitivities of MALDI-TOF and ESI mass spectrometries, the entire affinity isolation processes, including devices, can be scaled down by several orders of magnitude. Therefore, the affinity microcolumns described herein are devised and manufactured to fully utilize the sensitivity specifications of the recent enabling mass spectrometric techniques. An additional embodiment of the present invention is to provide a variety of affinity microcolumns specifically tailored to excel in a given biological media, illustrated in FIG. 6. Because all biological media are not exactly the same, with regard to biomolecule compositions and conditions, each affinity reagent derivatization scheme will behave differently in each biological media. For instance, affinity reagents tailored to retrieve a specific protein analyte present in plasma may not behave ideally when targeting the same analyte when present in a different biological media. Furthermore, the different buffer compositions and conditions of each biological media make available numerous small organic compounds that when retained and subsequently eluted with the targeted analyte will potentially deter from the mass spectrometric process. It is therefore necessary to construct affinity microcolumns for each biological fluid that show not only high specificity towards targeted analytes and low non-specific binding properties with regard to other large molecules that potentially interfere with the characterization of the analyte, but also exhibit minimal retention of smaller molecules that potentially interfere with the physical phenomena underlying mass spectrometric processes, e.g., MALDI or ESI. Targets After analytes are retrieved from biological media they are essentially microeluted and "stamped" directly from the affinity microcolumns onto a target or target array fitting into a mass spectrometer. In this manner, the spatial array from the initial multi-sample container, e.g., titer plate, is maintained throughout the affinity capture and washing steps, as well as onto the mass spectrometer target. The present invention further embodies the use of specially tailored mass spectrometer targets in the automated preparation and analysis of proteins retrieved using the affinity microcolumns. Essential to incorporating the automated robotics into the high throughput, parallel process is reproducibility between each sample, and the ability to control the location of the samples upon deposition onto the mass spectrometer target. In order to ensure these aspects are instilled into the automated process, self-assembled monolayers (SAM) are patterned onto mass spectrometer targets in manners able to control the area of analyte deposition. For example, thiol or mercaptan compounds that are hydrophobic or hydrophillic in character are used to pattern contrasting areas on gold-plated targets. By surrounding a hydrophillic SAM with a hydrophobic SAM, a clear boundary is created that is able to confine aqueous sample (from the affinity microcolumns) to a clearly defined area on the target. The spatial array dictated by the parallel robotics can thus be maintained by simultaneously eluting multiple samples, from multiple affinity microcolumns (using robotics), onto a mass spectrometer target patterned to the same spatial array used in throughout the robotic processing. In other applications, mass spectrometer targets are additionally tailored to include reactive surfaces capable of analyte processing. When investigating biomolecules using mass spectrometry it is often necessary to perform telltale chemistries and/or enzymologies to gain further detail on the structure of an analyte. Of particular importance are analyses that use specific chemical or enzymatic modifications in combination with mass spectrometry for purposes such as identifying analytes, analyte variants and modifications present within an analyte. Moreover, oftentimes it is of great value to quasi-purify mass spectrometric preparations by removal of potentially interfering species from solution through scavenging interactions designed to remove the interferences while leaving the target analyte available of analysis. A most efficient means of performing these operations is to use mass spectrometer targets that are derivatized with chemicals or enzymes for the particular processing function. In a preferred embodiment, a target or target array is made by first etching channels around designated target areas using photoresist technologies. A layer of gold is deposited onto the etched substrate, such as by traditional electroplating techniques or plasma deposition. This layer of gold naturally follows the surface contours created by the etching. Depending upon the substrate, one or more intermediate layers may be required, such as a nickel intermediate layer is required when depositing a surface layer of gold. An activated or activatable reagent, capable of forming a chemical bond or adsorbing to the modified substrate surface, such as dithiobis(succinimidylproprionate) (DSP) or derivatives thereof, is then bound onto the target areas, but not elsewhere. Any transport solvent is either allowed to evaporate or removed producing a dry self-assembled monolayer (SAM) of the activated or activatable reagent. A protective layer is deposited onto the target SAM, such as dextran solubilized in appropriate solvent. When that solvent is DMSO, the DMSO is then removed by placing the target in a vacuum. The target (array) is then coated with a hydrophobic reagent, such as octadecyl mercaptan solubilized in a solvent that does not dissolve the protective layer. When dextran is the protective layer, isopropanol may be used to solubilize the hydrophobic reagent. The target is rinsed to remove any non-bound hydrophobic reagent. In the example where activated reagent is bound to the target areas, the activated reagent is made available for use by merely removing the protective layer, which also removes any hydrophobic reagent present in or on the protective layer, such as by rinsing with DMSO. In the example where activatable reagent is bound to the target areas, the reagent may be activated for use by either removing the protective layer followed by reagent activation using an activating reagent or by direct activation, where the solvent transporting the activating reagent also serves to dissolve the protective layer. In the second case, the dissolved protective layer is then removed by subsequent rinses. Finally, a bioreagent or biological reagent, such as a polymer, protein, peptide, or enzyme, is bound to the surface of the target areas. The binding of the bioreagent is facilitated by the activated reagent already bound to the target areas. In the case where there is activated reagent coated by the protective layer, the bioreagent may be added to the surface by either removing the protective layer and then adding bioreagent to the target area or by direct binding, where the solvent transporting the bioreagent also serves to dissolve the protective layer. An advantage to the above target or target array manufacturing process is that the targets, once coated with the protective layer, may be stored for extended periods of time and then used at the discretion of the consumer. Another advantage of the target array is to provide a confined reaction surface for analyte processing and manipulation of impurities. In yet another similar embodiment, mass spectrometer target surface or surfaces are derivatized with chemicals found to enhance sample preparation through promoting the formation of crystals of matrices used in the practice of MALDI. Such matrix crystal "seeding" is found invaluable in the automation of the entire sample preparation process, enabling the production of highly reproducible samples over the entire area of the target. High Throughput Machine The individual components described herein come together to form a single, integrated system capable of high-throughput analysis of analytes retrieved from biological media. Fundamental analyses begin with verifying the primary structure, i.e., sequence of analytes. Oftentimes, a single high-accuracy determination of molecular weight is sufficient to verify the primary structure of analytes. If higher precision is required in verifying the primary structure of an analyte, it is convenient to mass map the analyte (after retrieval) using chemically/enzymatically active mass spectrometer targets. During such mapping procedures, an analyte is digested using high specificity cleavage reagents to produce a multitude of signals when analyzed using mass spectrometry. When viewed as a group, these signals are able to verify primary structure with greater precision and redundancy than a single mass determination. Alternatively, these data can be used to search databases for variants of an analyte that differ largely from that predicted for a normal analyte, e.g., splice variants. In a similar embodiment, other variants of analytes are mapped to elucidate the nature, location and origin of the variation. Analytes and variants present in a single sample are co-extracted from biological media using a common affinity reagent localized in the microcolumn and are simultaneously subjected to mapping on an activated mass spectrometer target or target array. Because most analyte variants will share a large degree of homology with the normal analyte, most mapping signals will be common between the analyte and variant. However, uncommon, or mass-shifted, signals will also be present within the mapping data. Using these differential data, in combination with knowledge of the cleavage agent and information of the primary, tertiary, quanternary structures of the normal analyte, it is possible to elucidate the site of the variation. Furthermore, using knowledge of mass differences between component residues of the analyte (e.g., mass difference between amino acids in proteins or nucleic acids in DNA/RNA) and accurate determination of the mass-shifts, it is possible to determine the transposition that created the variant. Such analyses are of great value in elucidating, e.g., point mutations present in proteins or polymorphisms present in nucleic acids. Likewise, knowledge of molecular weights of potential modifying groups (e.g., glycans, phosphates, methyl, formyl and the like) can be used in combination with mapping data to elucidate the sites and nature of chemical modifications of the analyte. Finally, reactive targets designed to address specific modifications can be used in the integrated system for the determination of the quantity (number) of modifying moieties by cleaving them from the analyte and viewing subsequent mass shifts in mass spectra. In another embodiment, the present invention is used in the high-throughput quantitation of specific analytes present in biological media. Using this process, analytes and internal references (analyte-like species) are simultaneously retrieved from biological media and processed through to mass spectrometry. In the same parallel processing operation, standard samples are analyzed to produce working curves equating analyte signal with the amount of analyte present in the biological media. The amount of analyte present in each sample can then be either judged as elevated relative to other samples, or determined absolutely using the working curve. In a further embodiment, the present invention is used in determining the interacting partners involved in protein-ligand interactions. Essentially, affinity microcolumns are derivatized with ligands of interest with the intention of screening biological media for interacting partners. The ligands act as affinity receptors capable of selectively isolating analytes from the biological media. Once isolated, the analytes are subjected to mass spectrometry for identification. Oftentimes, direct mass spectrometric analysis, and a knowledge of components present in the biological media, is sufficient to identify retained analytes via direct molecular weight determination. Alternatively, unknown analytes are subjected to digestion using chemically/enzymatically active targets and the resulting fragments (e.g., proteolytic fragments) subjected to mass spectrometry. The accurately determined molecular weights of the fragments (and knowledge of cleavage specificity) are then used to fuel genomic or protein database searches capable of identifying the analytes. In a similar embodiment, protein-ligand interactions are investigated by designing an affinity reagent to target a specific protein that in itself retains other analytes. In this manner, protein complexes are retrieved from biological media by targeting one of their constituents. Using the aforementioned analytical approaches, the identity and nature of the components of the complex are then delineated. |
PATENT EXAMPLES | available on request |
PATENT PHOTOCOPY | available on request |
Want more information ? Interested in the hidden information ? Click here and do your request. |