PATENT NUMBER | This data is not available for free |
PATENT GRANT DATE | July 31, 2001 |
PATENT TITLE |
Spin-on glass anti-reflective coatings for photolithography |
PATENT ABSTRACT | Anti-reflective coating materials for deep ultraviolet photolithography include one or more organic dyes incorporated into spin-on-glass materials. Suitable dyes are strongly absorbing over wavelength ranges around wavelengths less than 260 nm such as 248 nm and 193 nm, that may be used in photolithography. A method of making dyed spin-on-glass materials includes combining one or more organic dyes with alkoxysilane reactants during synthesis of the spin-on-glass materials |
PATENT INVENTORS | This data is not available for free |
PATENT ASSIGNEE | This data is not available for free |
PATENT FILE DATE | June 10, 1999 |
PATENT REFERENCES CITED |
Singer, "Anti-Reflective Coatings: A Story of Interfaces", Semiconductor International, pp. 55-60 (Mar. 1999). Lucas, et al., "Anti-reflective coating optimizing techniques for sub-0.2um geometries", Motorola, Advanced Products Research and Development Lab, p. 171, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar. 3, 2000. Puppo, et al., "A novel organic resist removal and cleaning technology", p. 228, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar. 3, 2000. Taylor, et al., "Methyacrylate Resists and Antireflective Coatings for 193 nm Lithography", p. 245, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar 3, 2000. Lin, et al., "Dual Layer Inorganic SiON Bottom ARC for 0.25 .mu.m DUV Hard Mask Applications", p. 246, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar. 3, 2000. Yamanaka, et al., "Suppression of Resist pattern Deformation on SiON Bottom Anti-Reflective Layer for Deep UV Lithography", p. 247, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar. 3, 2000. Padmanaban, "Bottom Anti-Reflective Coatings for ArF, KrF, and I-line Applications: A Comparison of Theory, Design and Lithographic Aspects", p. 281, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar. 3, 2000. Onishi, "Application of polysilanes for deep UV antireflective coating", p. 248, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar. 3, 2000. Mizutani, et al., "Design of a new bottom antireflective coating composition for KrF resist", p. 277, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar. 3, 2000. Trefonas, "Organic Antireflective Coatings for 193nm Lithography", p. 298, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar. 3, 2000. Meador, "Recent Progress in 193 nm Antireflective Coatings", p. 311, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar. 3, 2000. Ding, et al., Process and Performance Optimization of Bottom Antireflective Coatings (Part II), p. 328, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar. 3, 2000. Schiavone, et al., "SiON based antireflective coating for 193nm lithography", p. 335, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar. 3, 2000. Lu, "Performance impact of novel polymetric dyes in photoresist application", p. 346, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar. 3, 2000. Andrews, et al., "Spinnable and UV-Patternable Hybrid Sol-Gel Silica Glass for Direct Semiconductor Dielectric Layer Manufacturing", p. 347, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar. 3, 2000. Stephen, et al., "Antireflective Coating for 193nm Lithography", p. 355, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar. 3, 2000. Chun, et al., "Novel Hardening Methods of DUV Chemically Amplified Photoresist By ION Implanation and Its Application to New Organic ARC Material and Bilayer Process", p. 360, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar. 3, 2000. van Wingerden, "Joint optimisation of substrate reflectivity, resist thickness and resist absorption for CD control and resolution", p. 451, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar. 3, 2000. Chou, et al., "Anti-Reflection Strategies for Sub-0.18.mu.m Dual Damascene Patterning in KrF 248nm Lithography", p. 453, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar. 3, 2000. Nakaoka, et al., "Comparison of CD variation between organic and inorganic bottom anti-reflective coating on Topographic Substrates", p. 454, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar. 3, 2000. Bauer, et al., "ARC technology to minimize CD-Variations during Emitter structuring--Experiment and Simulation", p. 459, SPIE 25th Annual Symposium on Microlithography, Feb. 27-Mar. 3, 2000. |
PATENT CLAIMS |
We claim: 1. A dyed spin-on-glass composition comprising a siloxane polymer and an incorporatable organic dye that strongly absorbs light over at least an approximately 10 nm wide wavelength range, the range at wavelengths less than about 260 nm. 2. The composition of claim 1 wherein the organic dye comprises from one to three benzene rings and a reactive group selected from the group consisting of hydroxyl groups, amine groups, carboxylic acid groups, and silicontriethoxy groups. 3. The composition of claim 2 wherein the organic dye comprises a dye selected from the group consisting of anthraflavic acid, 9-anthracene carboxylic acid, 9-anthracene methanol, alizarin, quinizarin, primuline, 2-hydroxy-4(3-triethoxysilylpropoxy)-diphenylketone, rosolic acid, triethoxysilylpropyl-1,8-naphthalimide, 9-anthracene carboxy-methyl triethoxysilane, and mixtures thereof. 4. The composition of claim 2 wherein the organic dye comprises a dye selected from the group consisting of 9-anthracene methanol, alizarin, quinizarin, 2-hydroxy-4(3-triethoxysilylpropoxy)-diphenylketone, rosolic acid, 9-anthracene carboxy-methyl triethoxysilane, and mixtures thereof. 5. The composition of claim 2 wherein the organic dye comprises 9-anthracene carboxy-methyl triethoxysilane. 6. The composition of claim 1 wherein the siloxane polymer is a polymer selected from the group consisting of methylsiloxane, methylsilsesquioxane, methylphenylsiloxane, methylphenylsilsesquioxane, and silicate polymers. 7. The composition of claim 4 wherein the siloxane polymer is a polymer selected from the group consisting of methylsiloxane, methylsilsesquioxane, methylphenylsiloxane, methylphenylsilsesquioxane, and silicate polymers. 8. A coating solution comprising the dyed spin-on-glass composition comprising: combining one or more alkoxysilanes, one or more incorporatable organic dyes, an acid/water mixture, and one or more solvents to form a reaction mixture, wherein the organic dyes strongly absorb light over at least an approximately 10 nm wide wavelength range, the range at wavelengths less than about 260 nm; and refluxing the reaction mixture to form the dyed spin-on-glass composition. 11. The method of claim 10 wherein the one or more organic dye comprises from one to three benzene rings and a reactive group selected from the group consisting of hydroxyl groups, amine groups, carboxylic acid groups, and silicontriethoxy groups. 12. The method of claim 11 wherein the one or more organic dye comprises a dye selected from the group consisting of anthraflavic acid, 9-anthracene carboxylic acid, 9-anthracene methanol, alizarin, quinizarin, primuline, 2-hydroxy-4(3-triethoxysilylpropoxy)-diphenylketone, rosolic acid, triethoxysilylpropyl-1,8-naphthalimide, 9-anthracene carboxy-methyl triethoxysilane, and mixtures thereof. 13. The method of claim 10 wherein the one or more alkoxysilane is selected from the group consisting of tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, tetramethoxysilane, methyltrimethoxysilane, phenyltriethoxysilane, and phenyltrimethoxysilane. 14. The method of claim 13 wherein the one or more alkoxysilane is tetraethoxysilane and methyltriethoxysilane. 15. The method of claim 10 wherein the acid/water mixture is a nitric acid/water mixture. 16. A method of making a dyed spin-on-glass composition comprising: combining one or more alkoxysilanes, one or more incorporatable organic dyes, and one or more solvents to form a first reaction mixture, wherein the organic dyes strongly absorb light over at least an approximately 10 nm wide wavelength range, the range at wavelengths less than about 260 nm; refluxing the first reaction mixture; adding an acid/water mixture to the first reaction mixture to form a second reaction mixture. refluxing the second reaction mixture to form the dyed spin-on-glass composition. 17. A method of making a coating solution containing a dyed spin-on-glass polymer comprising: combining one or more alkoxysilanes, one or more incorporatable organic dyes, an acid/water mixture, and one or more solvents to form a reaction mixture, wherein the organic dyes strongly absorb light over at least an approximately 10 nm wide wavelength range, the range at wavelengths less than about 260 nm; refluxing the reaction mixture to form a dyed spin-on-glass polymer; and adding one or more dilutant solvents to the dyed spin-on-glass composition to produce a coating solution. 18. The method of claim 17 wherein the coating solution is between about 1% and about 20% dyed spin-on-glass polymer. -------------------------------------------------------------------------------- |
PATENT DESCRIPTION |
TECHNICAL FIELD The present invention relates generally to spin-on glass materials and more specifically to spin-on glass materials containing dyes for use as anti-reflective layers in photolithography and methods of producing the materials. BACKGROUND To meet the requirements for faster performance, the characteristic dimensions of features of integrated circuit devices have continued to be decreased. Manufacturing of devices with smaller feature sizes introduces new challenges in many of the processes conventionally used in semiconductor fabrication. One of the most important of these fabrication processes is photolithography. It has long been recognized that linewidth variations in patterns produced by photolithography can result from optical interference from light reflecting off an underlying layer on a semiconductor wafer. Variations in photoresist thickness due to the topography of the underlying layer also induce linewidth variations. Anti-reflective coatings (ARC) applied under a photoresist layer have been used to prevent interference from reflection of the irradiating beam. In addition, anti-reflective coatings partially planarize the wafer topography, helping to improve linewidth variation over steps because the photoresist thickness is more uniform. Organic polymer films, particularly those that absorb at the i-line (365 nm) and g-line (436 nm) wavelengths conventionally used to expose photoresists, and at the recently used 248 nm wavelength, have been employed as anti-reflective coatings. However, the fact that the organic ARC's share many chemical properties with the organic photoresists can limit usable process sequences. Furthermore organic ARC's may intermix with photoresist layers. One solution to avoid intermixing, is to introduce thermosetting binders as additional components of organic ARC's, as described, for example in U.S. Pat. No. 5,693,691 to Flaim et al. Dyes may also be incorporated in organic ARC's, as well as, optionally, additional additives such as wetting agents, adhesions promoters, preservatives, and plasticisizers, as described in U.S. Pat. No. 4,910,122 to Arnold et al. Silicon oxynitride is another material that has been used as an anti-reflective coating. However, silicon oxynitride works as an ARC by a destructive interference process rather than by absorption, which means that very tight control of the oxynitride thickness is necessary and that the material may not work well as an ARC over highly variable topography. Furthermore silicon oxynitride is typically deposited by chemical vapor deposition, while photoresist layers are typically applied using a spin-coater. The additional chemical vapor deposition process can add to processing complexity. Yet another class of materials that can be used as an anti-reflective layer is spin-on-glass (SOG) compositions containing a dye. Yau et al., U.S. Pat. No. 4,587,138, disclose a dye such as basic yellow #11 mixed with a spin-on-glass in an amount approximately 1% by weight. Allman et al. U.S. Pat. No. 5,100,503 disclose a cross-linked polyorganosiloxane containing an inorganic dye such as TiO.sub.2, Cr.sub.2 O.sub.7, MoO.sub.4, MnO.sub.4, or ScO.sub.4, and an adhesion promoter. Allman additionally teaches that the spin-on-glass compositions also serve as a planarizing layer. However, the spin-on-glass, dye combinations that have been disclosed to date are not optimal for exposure to the deep ultraviolet, particularly 248 and 193 nm, light sources that are coming into use to produce devices with small feature sizes. Furthermore, not all dyes can be readily incorporated into an arbitrary spin-on-glass composition. What is needed is a dyed spin-on-glass anti-reflective coating material that absorbs strongly and uniformly in the deep ultraviolet spectral region. It would be desirable for the ARC layer to be impervious to photoresist developers. It would also be desirable to provide a method to incorporate a range of dyes into a variety of SOG materials while retaining the desirable properties of the original spin-on-glass materials. SUMMARY An anti-reflective coating material for deep ultraviolet photolithography includes one or more organic dyes incorporated into a spin-on-glass (SOG) material. The spin-on-glass materials include methylsiloxane, methylsilsesquioxane, methylphenylsiloxane, methylphenylsilsesquioxane, and silicate polymers. Dyes suitable for use with the present invention are strongly absorbing over at least an approximately 10 nm wide wavelength range around wavelengths less than about 260 nm, such as 248 nm, 193 nm, or other ultraviolet wavelengths that may be used in photolithography. The chromophores of suitable dyes typically have from one to three benzene rings that may or may not be fused. Incorporatable dyes have an accessible reactive group attached to the chromophore, the reactive groups including hydroxyl groups, amine groups, carboxylic acid groups, and groups with bridges to silicontriethoxy groups. Suitable organic dyes include anthraflavic acid, 9-anthracene carboxylic acid, 9-anthracene methanol, alizarin, quinizarin, primuline, 2-hydroxy-4(3-triethoxysilylpropoxy)-diphenylketone, rosolic acid, triethoxysilylpropyl-1,8-naphthalimide, 9-anthracene carboxy-methyl triethoxysilane, and mixtures thereof. According to another aspect of the present invention, methods for synthesizing dyed spin-on-glass compositions are provided. Spin-on-glass materials are conventionally synthesized from alkoxysilane reactants such tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, tetramethoxysilane, methyltrimethoxysilane, phenyltriethoxysilane, and phenyltrimethoxysilane. A method of making a dyed spin-on-glass composition includes combining one or more alkoxysilanes, one or more incorporatable organic dyes, an acid/water mixture, such as a nitric acid/water mixture, and one or more solvents to form a reaction mixture; and refluxing the reaction mixture to form the dyed spin-on-glass composition. The spin-on-glass composition so formed is diluted with one or more solvents to provide coating solutions that produce films of various thicknesses. According to yet another aspect of the invention, the organic dye of the chemical composition 9-anthracene carboxy-methyl triethoxysilane is provided. A method of synthesizing 9-anthracene carboxy-methyl triethoxysilane includes combining 9-anthracene carboxylic acid, chloromethyltriethoxysilane, triethylamine, and a solvent to form a reaction mixture; refluxing the reaction mixture; cooling the refluxed reaction mixture to form a precipitate and a remaining solution; and filtering the remaining solution to produce liquid 9-anthracene carboxy-methyl triethoxysilane. |
PATENT EXAMPLES | Available on request |
PATENT PHOTOCOPY | Available on request |
Want more information ? Interested in the hidden information ? Click here and do your request. |