PATENT NUMBER | This data is not available for free |
PATENT GRANT DATE | April 30, 2002 |
PATENT TITLE |
Copolymers and oil-and water-repellent compositions containing them |
PATENT ABSTRACT |
The present invention is directed to a copolymer capable of forming a water- and oil-repellent agent that enables binding to textiles and other materials without the production of formaldehyde. The copolymer according to the present invention comprises a) a fluoroaliphatic radical-containing agent, (b) stearyl (meth)acrylate; (c) a chlorine-containing compound; and (d) a monomer selected from those that contain an anhydride functional group or are capable of forming an anhydride functional group. The present invention further provides a water and oil repellency-imparting composition for fibrous and other substrates, the composition comprising the above copolymer together with a catalyst, such as sodium hypophosphite, for forming anhydrides from the acid-containing monomers in the copolymer. The composition can further optionally comprise other additives such as, e.g., poly(acrylic acid); an extender; a softener; an antioxidant; a surfactant; and/or a plasticizer. |
PATENT INVENTORS | This data is not available for free |
PATENT ASSIGNEE | This data is not available for free |
PATENT FILE DATE | April 10, 2000 |
PATENT REFERENCES CITED |
U.S. application No. 09/274,749, filed Mar. 23, 1999, pending. Hoffman, A.S. Macromol. Symp. 98, 645-664, (1995). |
PATENT PARENT CASE TEXT | This data is not available for free |
PATENT CLAIMS |
What is claimed is: 1. A copolymer which comprises: a) a fluoroaliphatic radical-containing agent; (b) stearyl (meth)acrylate; (c) a chlorine-containing compound, selected from the group consisting of vinylidene chloride, vinyl chloride, 2-chloroethylacrylate, 2-chloroethyl vinyl ether, and 2-chloroethyl vinyl ether; and (d) a monomer containing an anhydride functional group or capable of forming an anydride functional group. 2. A copolymer according to claim 1 which further comprises hydroxyalkyl (meth)acrylate. 3. A copolymer according to claim 1 wherein the fluoroaliphatic radical-containing agent is a fluorinated acrylate or a fluorinated methacrylate. 4. A copolymer according to claim 1 wherein the monomer is maleic acid, maleic anhydride, or acrylic acid. 5. A copolymer according to claim 1 comprising: a) a fluorinated acrylate; (b) stearyl acrylate; (c) a chlorine-containing compound, selected from the group consisting of vinylidene chloride, vinyl chloride, 2-chloroethylacrylate, 2-chloroethyl vinyl ether, and 2-chloroethyl vinyl ether; (d) maleic acid; (e) 2-hydroxyethyl methacrylate; (f) poly(ethylene glycol) methacrylate; (g) dodecanethiol; and (h) a free-radical initiator. 6. A water and oil repellency-imparting composition for fibrous and other substrates, the composition comprising: (I) a copolymer, which comprises: (a) a fluoroaliphatic radical-containing agent; (b) stearyl (meth)acrylate; (c) a chlorine-containing compound, selected from the group consisting of vinylidene chloride, vinyl chloride, 2-chloroethylacrylate, 2-chloroethyl vinyl ether, and 2-chloroethyl vinyl ether; and (d) a monomer containing an anhydride functional group or capable of forming an anhydride functional group; and (II) a catalyst for forming anhydrides from the monomer in the copolymer. 7. A composition according to claim 6 wherein the copolymer further comprises hydroxyalkyl (meth)acrylate. 8. A composition according to claim 6 wherein the fluoroaliphatic radical-containing agent is a fluorinated acrylate or a fluorinated methacrylate. 9. A composition according to claim 6 which further comprises poly(acrylic acid). 10. A composition according to claim 7 which further comprises poly(acrylic acid). 11. A composition according to claim 8 which further comprises poly(acrylic acid). 12. A composition according to claim 6 wherein the catalyst is sodium hypophosphite. 13. A composition according to claim 6 which further comprises an antioxidant. 14. A composition according to claim 6 which further comprises a softener/extender. 15. A composition according to claim 6 comprising: (I) a copolymer which comprises: a) a fluorinated acrylate; (b) stearyl acrylate; (c) a chlorine-containing compound, selected from the group consisting of vinylidene chloride, vinyl chloride, 2-chloroethylacrylate, 2-chloroethyl vinyl ether, and 2-chloroethyl vinyl ether; and (d) maleic acid; (e) 2-hydroxyethyl methacrylate; (f) poly(ethylene glycol) methacrylate; (g) dodecanethiol; and (h) a free-radical initiator; (II) a catalyst for forming anhydrides from the maleic acid in the copolymer, and (III) poly(acrylic acid). 16. A composition according to claim 15 wherein the catalyst is sodium hypophosphite. 17. A composition according to claim 15 which further comprises an antioxidant. 18. A composition according to claim 17 wherein the antioxidant is EDTA. 19. A composition according to claim 15 which further comprises a softener/extender. 20. A composition according to claim 19 wherein the softener/extender is maleinized polybutadiene. -------------------------------------------------------------------------------- |
PATENT DESCRIPTION |
TECHNICAL FIELD This invention relates to a composition comprising a fluoroaliphatic radical-containing agent and a monomer that contains an anhydride or is capable of forming an anhydride functional group for imparting water and oil repellency to fibrous substrates and other materials treated therewith through the formation of an ester, amide, thioester, or similar bond to the substrate. In another aspect, this invention relates to a method of using such composition to treat such substrates and materials, and in another aspect it relates to the so-treated substrates and materials. In yet a further aspect, a durable softener/extender is used to improve the water-repellent properties of the composition and to improve the hand. BACKGROUND OF THE INVENTION The treatment of fibrous substrates with fluorochemical compositions to impart water and oil repellency is known; see, for example, Banks, Ed., Organofluorine Chemicals and Their Industrial Applications, Ellis Horwood Ltd., Chichester, England, 1979, pp. 226-234. Generally, copolymers having a water- and oil-repellence are copolymers each comprising a (meth)acrylate monomer containing a perfluoroalkyl group capable of directly giving a water- and oil-repellence, a fluorine-free monomer capable of improving an adhesiveness to the surfaces of materials to be treated such as fibers, etc., through an affinity thereto, and a monomer capable of giving a durability through self-crosslinking or reaction with reactive groups on the surface of the materials to be treated, typical of which are copolymers having N-methylol groups combined with the main chain, such as copolymers of perfluoroalkyl group-containing (meth)acrylate and N-methylol acrylamide-based copolymers. However, when the fibrous or other substrate is treated with these copolymers, formaldehyde is produced, which is highly undesirable from an environmental and safety standpoint. SUMMARY OF THE INVENTION The present invention is directed to a novel copolymer capable of forming a water- and oil-repellent agent that enables binding to fibrous substrates and other materials without the production of formaldehyde. The novel copolymer according to the present invention comprises a) a 20 fluoroaliphatic radical-containing agent, (b) stearyl (meth)acrylate; (c) a chlorine-containing compound, such as vinylidene chloride, vinyl chloride, 2-chloroethylacrylate, or 2-chloroethyl vinyl ether; and (d) a monomer selected from those containing an anhydride functional group or capable of forming an anhydride functional group. The copolymer may be further copolymerized with i) hydroxyalkyl (meth)acrylate to increase the performance and permanency of the resulting copolymer, ii) a compound such as poly(ethylene glycol) (meth)acrylate to improve solubility of the copolymer in water, and/or iii) a chain terminator, such as dodecanethiol, mercaptosuccinic acid, or other similar compounds, which acts to keep the molecular weight of the polymer low so that it is more readily dispersible in water and can better penetrate the fabric. The present invention further provides a water- and oil-repellency-imparting composition for fibrous and other substrates, the composition comprising the above copolymer together with a catalyst, such as sodium hypophosphite, for forming anhydrides from the acid-containing monomers in the copolymer. The composition can further optionally comprise other additives such as, for example, poly(acrylic acid), which has been found by the applicants to increase the performance and durability of the polymer by an unknown mechanism, possibly (without being bound by theory) by "tacking" the copolymer to the surface of the fabric. Other optional additives include an antioxidant, such as ethylenediamine tetraacetic acid (EDTA), to reduce substrate yellowing; a permanent softener/extender to improve the hand of the substrate and increase water repellency; a surfactant to emulsify the polymer in water; wetting agents; and/or a plasticizer. The composition can be applied, e.g., to a fibrous substrate by contacting the substrate with the composition, for example, by immersing it in a bath of the composition or by spraying the composition onto the substrate. The treated substrate is then cured to remove the solvent therefrom and allow reaction with the textile. The composition of this invention imparts desirable water and oil repellency to the substrates treated therewith without adversely affecting other desirable properties of the substrate, such as soft hand (or feeling). The composition allows for nonformaldehyde-releasing binding to cotton and other substrates. The composition of the present invention can be used for providing water and oil repellency to fibrous substrates such go as textiles, papers, non-woven articles or leather. DETAILED DESCRIPTION OF THE INVENTION The fluoroaliphatic radical-containing agents may be chosen from any of those that are useful for the treatment of fabrics to obtain repellency of water and oily and aqueous stains. Fluoroaliphatic radical-containing agents include condensation polymers such as polyesters, polyamides or polyepoxides and vinyl polymers such as acrylates, methacrylates or polyvinyl ethers. Further examples of such fluoroaliphatic radical-containing water and oil repellency-imparting agents include those formed by the reaction of perfluoroaliphatic thioglycols with diisocyanates to provide perfluoroaliphatic group-bearing polyurethanes. Another group of compounds which can be used are fluoroaliphatic radical-containing N-methylolcondensation products. Further examples include fluoroaliphatic radical-containing polycarbodiimides, which can be obtained by, for example, reaction of perfluoroaliphatic sulfonamido alkanols with polyisocyanates in the presence of suitable catalysts. The fluorochemical component is preferably selected from one or more fluoroaliphatic radical-containing acrylate or methacrylate monomers. Such compounds have the structure of Formula I, below: ##STR1## In the compound of Formula I, for example: m is 0 to 2; n is 0 or1; o is 0 to 2; A is --SO.sub.2 --, --N(W)--SO.sub.2 --, --CONH--, --CH.sub.2, or --CF.sub.2 --; R is a linear, branched, or cyclic fluorocarbon, including fully or partially fluoronated hydrocarbons, wherein R may be, for example, a C.sub.1, to C.sub.30 fluorocarbon; W is hydrogen or C.sub.1 -C.sub.4 lower alkyl; and X is acrylate or methacrylate. Fluoroaliphatic radical-containing agents are available commercially or they may be synthesized. Commerically available agents include FX-13, a fluorinated acrylate from Minnesota Minerals and Mining Co.; Zonyl TA-N, a fluorinated acrylate from DuPont; and FAVE.TM. products from AlliedSignal (Morristown, N.J.). The fluoroaliphatic radical-containing agent as component (a) of the present copolymer is copolymerized in such a proportion as to take about 30 to about 70% by weight, preferably about 35 to about 65% by weight, of the copolymer. Stearyl (meth)acrylate as component (b) of the present copolymer is copolymerized in such a proportion as to take about 25 to about 60% by weight, preferably about 30 to about 60% by weight, of the copolymer. The chlorine-containing compound as component (c) of the present copolymer is copolymerized in such a proportion as to take about 1 to about 25% by weight, preferably about 5 to about 20% by weight, of the polymer. The monomer as component (d) of the present copolymer is selected from those monomers that contain an anhydride functional group or are capable of forming an anhydride functional group. Such monomers can include carboxylic acids and carboxylic acid anhydrides and can be, but are not limited to, maleic acid, maleic anhydride, acrylic acid, itaconic acid, bisacrylamidoacetic acid, 3-butene-1,2,3-tricarboxylic acid, 2-carboxyethyl acrylate, methacrylic acid, acrylic anhydride, allylsuccinic anhydride, citraconic anhydride, methacrylic anhydride, 4-methacryloxyethyl trimellitic anhydride, 4,4'-hexafluoro-isopropylidenebisphthalic anhydride, and the like. The monomer is copolymerized in such a proportion as to take about 1 to about 10% by weight, preferably about 2 to about 5% by weight, of the copolymer of this invention. Hydroxyalkyl (meth)acrylate for use in the invention as an optional component of the present copolymer includes, for example, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, and the like, and can be copolymerized in such a proportion as to take not more than 5% by weight, preferably about 1 to about 3% by weight, of the copolymer on the basis of total copolymer. When the hydroxyalkyl (meth)acrylate is copolymerized, further improvement of durability can be attained with simultaneous use of a crosslinking agent such as butane tetracarboxylic acid, poly(acrylic acid), and the like. As used herein, the term "(meth)acrylate" refers to either the acrylate or the methacrylate compound, unless otherwise indicated. The present copolymer can be prepared according to various well-known methods, preferably by solution polymerization or by emulsion polymerization. Solution polymerization can be carried out by dissolving the respective monomers together into a suitable solvent, followed by polymerization reaction using a free-radical initiator. Emulsion polymerization can be carried out by emulsifying and dispersing the respective monomers together into water, using various surfactants, preferably a non-ionic surfactant, an anionic surfactant, or a mixture thereof, followed by polymerization reaction in the presence of a free-radical initiator, with stirring. To form the present oil- and water-repellent compositions of the invention, a copolymer comprising a) a fluoroaliphatic radical-containing agent, (b) stearyl (meth)acrylate; (c) a chlorine-containing compound, such as vinylidene chloride, vinyl chloride, 2-chloroethylacrylate, or 2-chloroethyl vinyl ether; and (d) a monomer containing an anhydride functional group or capable of forming an anhydride functional group--with or without the optional additives i) hydroxyalkyl (meth)acrylate, ii) a compound such as poly(ethylene glycol) (meth)acrylate to improve solubility of the copolymer in water, and/or iii) a chain terminator--is diluted in water and mixed together with an anhydride-forming catalyst (when necessary) and, optionally, poly(acrylic acid), an antioxidant, a permanent softener/extender, and/or other additives. In a presently preferred embodiment, the permanent softener/extender is a copolymer or graft-copolymer of an anhydride-forming monomer and a soft, hydrophobic monomer (e.g., butadiene, ethylene, isopropylene, and the like). In a presently preferred embodiment, the composition comprises 3% of the copolymer, 4% polyacrylic acid, 2% sodium hypophosphite hydrate (catalyst), 1% EDTA (antioxidant), and 4% softener/extender such as poly(butadiene-graft-maleic anhydride) in water. In preparing the oil- and water-repellent copolymeric composition of the invention, the pH range should be chosen to be compatible with the reactants. The process temperature can vary widely, depending on the reactivity of the reactants. However, the temperature should not be so high as to decompose the reactants or so low as to cause inhibition of the reaction or freezing of the solvent. Unless specified to the contrary, the process described herein takes place at atmospheric pressure over a temperature range from about 40.degree. C. to about 250.degree. C. The time required for the processes herein will depend to a large extent on the temperature being used and the relative reactivities of the copolymer and the other materials. Unless otherwise specified, the process times and conditions are intended to be approximate. This invention is further directed to the fibers, yarns, fabrics, textiles, or finished goods (encompassed herein under the term "fibrous substrates") treated with the water- and oil-repellent composition. The fibrous substrates of the present invention include fibers, woven and non-woven fabrics derived from natural or synthetic fibers and blends of such fibers, as well as cellulose-based papers, leather, and the like. They can comprise fibers in the form of continuous or discontinuous monofilaments, multifilaments, staple fibers, and yarns containing such filaments and/or fibers, and the like, which fibers can be of any desired composition. The fibers can be of natural or synthetic origin. Mixtures of natural fibers and synthetic fibers can also be used. Included with the fibers can be non-fibrous elements, such as particulate fillers, binders, sizes and the like. The fibrous substrates of the invention are intended to include fabrics and textiles, and may be a sheet-like structure [woven (including jacquard woven for home furnishings fabrics) or non-woven, knitted (including weft inserted warp knits), tufted, or stitch-bonded] comprised of fibers or structural elements. Examples of natural fibers include cotton, wool, silk, jute, linen, and the like. Examples of manmade fibers derived primarily from natural sources include regenerated cellulose rayon, cellulose acetate, cellulose triacetate, and regenerated proteins. Examples of synthetic fibers include polyesters (including polyethyleneglycol terephthalate), polyamides (including nylon, such as Nylon 6 and 6.6), acrylics, olefins, aramids, azions, modacrylics, novoloids, nytrils, spandex, vinyl polymers and copolymers, vinal, vinyon, and the like, and hybrids of such fibers and polymers. The composition of the present copolymer is applied to the material to be treated as a solution or dispersion/emulsion by methods known in the art such as by soaking, spraying, dipping, fluid-flow, padding, and the like. Reactive groups on the copolymer react with the fibrous material, by covalent bonding, to attach to the material. This curing can take place either before or after the treated textile is then removed from the solution and dried, although it is generally preferred that the cure occur after the drying step. In applying the copolymer composition of the invention to the web to be treated, the pH range should be chosen to be compatible with the reactants. The process (cure) temperature can vary widely, depending on the reactivity of the reactants. However, the temperature should not be so high as to decompose the reactants or so low as to cause inhibition of the reaction or freezing of the solvent. Unless specified to the contrary, the curing process described herein takes place at atmospheric pressure over a temperature range from about 110.degree. C. to about 250.degree. C. The time required for the processes herein will depend to a large extent on the temperature being used and the relative reactivities of the starting web and water-repellent polymeric composition. Unless otherwise specified, the process times and conditions are intended to be approximate. |
PATENT EXAMPLES | Available on request |
PATENT PHOTOCOPY | Available on request |
Want more information ? Interested in the hidden information ? Click here and do your request. |