LICENSEE | This data is not available for free |
LICENSOR | This data is not available for free |
LITERATURE REF. | This data is not available for free |
PATENT NUMBER | This data is not available for free |
PATENT GRANT DATE | February 25, 2003 |
PATENT TITLE |
Conjugated linoleic acid compositions |
PATENT ABSTRACT | Novel compositions containing conjugated linoleic acids are efficacious as animal feed additives and human dietary supplements. Linoleic acid is converted to its conjugated forms in which the resulting composition is low in certain unusual isomers compared to conventional conjugated linoleic products. In addition, the inventions provides compositions that are prepared according to a novel method that controls oxidation of CLA into volatile organic compounds as well as containing metal oxidant chelators to control oxidation during storage |
PATENT INVENTORS | This data is not available for free |
PATENT ASSIGNEE | This data is not available for free |
PATENT FILE DATE | September 24, 2001 |
PATENT PARENT CASE TEXT | This data is not available for free |
PATENT CLAIMS |
What is claimed is: 1. A nutritional bar comprising a conjugated linoleic acid component, said conjugated linoleic acid component containing less than 1% of the 8,10 and 11,13 isomers of conjugated linoleic acid. 2. The nutritional bar of claim 1, wherein said conjugated linoleic acid component contains less than 10 parts per million total of volatile organic compounds. 3. The nutritional bar of claim 1, wherein said conjugated linoleic acid component contains less than 5 parts per million total of volatile organic compounds. 4. The nutitional bar of claim 1, said nutritional bar further comprising a vitamin supplement. 5. The nutritional bar of claim 1, said nutritional bar further comprising a carbohydrate component. 6. The nutritional bar of claim 1, said nutritional bar further comprising a protein component. 7. The nutritional bar of claim 1, wherein said conjugated linoleic acid component is provided as a triglyceride. 8. A nutritional bar comprising a conjugated linoleic acid component, said conjugated linoleic acid component containing less than 100 parts per million total of volatile organic compounds. 9. The nutritional bar of claim 8, wherein said conjugated linoleic acid component contains less than 10 parts per million total of volatile organic compounds. 10. The nutritional bar of claim 8, wherein said conjugated linoleic acid component contains less than 5 parts per million total of volatile organic compounds. 11. The nutritional bar of claim 8, wherien said conjugated linoelic acid component contains less than less than 1% of the 8,10 and 11,13 isomers of conjugated linoleic acid. 12. The nutitional bar of claim 8, said nutritional bar further comprising a vitamin supplement. 13. The nutritional bar of claim 8, said nutritional bar further comprising a carbohydrate component. 14. The nutritional bar of claim 8, said nutritional bar further comprising a protein component. 15. The nutritional bar of claim 8, wherein said conjugated linoleic acid component is provided as a triglyceride. 16. A nutritional bar comprising a conjugated linoleic acid component, said conjugated linoleic acid component containing less than 100 parts per million total of volatile organic compounds and less than 1% of the 8,10 and 11,13 isomers of conjugated linoleic acid. 17. The nutritional bar of claim 16, wherein said conjugated linoleic acid component contains less than 10 parts per million total of volatile organic compounds. 18. The nutritional bar of claim 16, wherein said conjugated linoleic acid component contains less than 5 parts per million total of volatile organic compounds. 19. The nutitional bar of claim 16, said nutritional bar further comprising a vitamin supplement. 20. The nutritional bar of claim 16, said nutritional bar further comprising a carbohydrate component. 21. The nutritional bar of claim 16, said nutritional bar further comprising a protein component. 22. The nutritional bar of claim 16, wherein said conjugated linoleic acid component is provided as a triglyceride |
PATENT DESCRIPTION |
FIELD OF THE INVENTION The present invention relates to the field of human and animal nutrition, and in particular to certain novel compositions of conjugated linoleic acids (CLA). These compositions are prepared according to a novel method that controls oxidation of CLA into volatile organic compounds and in some cases contain antioxidants that control oxidation. BACKGROUND OF THE INVENTION In 1978, researchers at the University of Wisconsin discovered the identity of a substance contained in cooked beef that appeared to inhibit mutagenesis. The substance was found to be a mixture of positional isomers of linoleic acid (C18:2) having conjugated double bonds. The c9,t11 and t10,c12 isomers are present in greatest abundance, but it is uncertain which isomers are responsible for the biological activity observed. It has been noted from labelled uptake studies that the 9,11 isomer appears to be somewhat preferentially taken up and incorporated into the phospholipid fraction of animal tissues, and to a lesser extent the 10,12 isomer. (Ha, et al., Cancer Res., 50: 1097 [1990]). The biological activity associated with conjugated linoleic acids (termed CLA) is diverse and complex. At present, very little is known about the mechanisms of action, although several preclinical and clinical studies in progress are likely to shed new light on the physiological and biochemical modes of action. The anticarcinogenic properties of CLA have been well documented. Administration of CLA inhibits rat mammary tumorigenesis, as demonstrated by Birt, et al, Cancer Res., 52: 2035s [1992]. Ha, et al., Cancer Res., 50: 1097 [1990] reported similar results in a mouse forestomach neoplasia model. CLA has also been identified as a strong cytotoxic agent against target human melanoma, colorectal and breast cancer cells in vitro. A recent major review article confirms the conclusions drawn from individual studies (Ip, Am. J. Clin. Nutr., 66 (6 Supp): 1523s [1997]). Although the mechanisms of CLA action are still obscure, there is evidence that some component(s) of the immune system may be involved, at least in vivo. U.S. Pat. No. 5,585,400 (Cook, et al., incorporated herein by reference), discloses a method for attenuating allergic reactions in animals mediated by type I or TgE hypersensitivity by administering a diet containing CLA. CLA in concentrations of about 0.1 to 1.0 percent was also shown to be an effective adjuvant in preserving white blood cells. U.S. Pat. No. 5,674,901 (Cook, et al.), incorporated herein by reference, disclosed that oral or parenteral administration of CLA in either free acid or salt form resulted in elevation in CD-4 and CD-8 lymphocyte subpopulations associated with cell-mediated immunity. Adverse effects arising from pretreatment with exogenous tumor necrosis factor could be alleviated indirectly by elevation or maintenance of levels of CD-4 and CD-8 cells in animals to which CLA was administered. Finally, U.S. Pat. No. 5,430,066, incorporated herein by reference, describes the effect of CLA in preventing weight loss and anorexia by immune stimulation. Apart from potential therapeutic and pharmacologic applications of CLA as set forth above, there has been much excitement regarding the use of CLA nutritively as a dietary supplement. CLA has been found to exert a profound generalized effect on body composition, in particular redirecting the partitioning of fat and lean tissue mass. U.S. Pat. No. 5,554,646 (Cook, et al.), incorporated herein by reference, discloses a method utilizing CLA as a dietary supplement in which pigs, mice, and humans were fed diets containing 0.5 percent CLA. In each species, a significant drop in fat content was observed with a concomitant increase in protein mass. It is interesting that in these animals, increasing the fatty acid content of the diet by addition of CLA resulted in no increase in body weight, but was associated with a redistribution of fat and lean within the body. Another dietary phenomenon of interest is the effect of CLA supplementation on feed conversion. U.S. Pat. No. 5,428,072 (Cook, et al., incorporated herein by reference), provided data showing that incorporation of CLA into animal feed (birds and mammals) increased the efficiency of feed conversion leading to greater weight gain in the CLA supplemented animals. The potential beneficial effects of CLA supplementation for food animal growers is apparent. Another important source of interest in CLA, and one which underscores its early commercial potential, is that it is naturally occurring in foods and feeds consumed by humans and animals alike. In particular, CLA is abundant in products from ruminants. For example, several studies have been conducted in which CLA has been surveyed in various dairy products. Aneja, et al., J. Dairy Sci., 43: 231 [1990] observed that processing of milk into yogurt resulted in a concentration of CLA. (Shanta, et al., Food Chem., 47: 257 [1993]) showed that a combined increase in processing temperature and addition of whey increased CLA concentration during preparation of processed cheese. In a separate study, Shanta, et al., J. Food Sci., 60: 695 [1995] reported that while processing and storage conditions did not appreciably reduce CLA concentrations, they did not observe any increases. In fact, several studies have indicated that seasonal or interanimal variation can account for as much as three fold differences in CLA content of cows milk. (See e.g., Parodi, et al, J. Dairy Sci., 60: 1550 [1977]). Also, dietary factors have been implicated in CLA content variation, as noted by Chin, et al., J. Food Camp. Anal., 5: 185 [1992]. Because of this variation in CLA content in natural sources, ingestion of prescribed amounts of various foods will not guarantee that the individual or animal will receive the optimum doses to ensure achieving the desired nutritive effect. Linoleic acid is an important component of biolipids, and comprises a significant proportion of triglycerides and phospholipids. Linoleic acid is known as an "essential" fatty acid, meaning that the animal must obtain it from exogenous dietary sources since it cannot be autosynthesized. Incorporation of the CLA form of linoleic acid may result in a direct substitution of CLA into lipid positions where unconjugated linoleic would have migrated. However, this has not been proven, and some of the highly beneficial but unexplained effects observed may even result from a repositioning of CLA within the lipid architecture at sites where unconjugated linoleic acid would not have otherwise migrated. It is now clear that one source of animal CLA, especially in dairy products, comes from the biochemical action of certain rumen bacteria on native linoleic acid, first isomerizing the linoleic acid to CLA, and then secreting it into the rumen cavity. Kepler, et al., J. Nutrition, 56: 1191 [1966] isolated a rumen bacterium, Butyrivibrio fibrisolvens, which catalyzes formation of 9,11-CLA as an intermediate in the biohydrogenation of linoleic acid. Chin, et al., J. Nutrition, 124: 694 [1994] further found that CLA found in the tissues of rodent was associated with bacteria, since corresponding germ-free rats produced no CLA. In the development of a defined commercial source of CLA for both therapeutic and nutritional application, a process for generating large amounts of defined material is needed. The problem with most CLA products made by conventional approaches is their heterogeneity, and substantial variation in isoform from batch to batch. Considerable attention has been given to the fact that the ingestion of large amounts of hydrogenated oils and shortenings, instead of animal tallow, has resulted in a diet high in trans-fatty acid content. For example, Holman, et al., PNAS, 88:4830 [1991] showed that rats fed hydrogenated oils gave rise to an accumulation in rat liver of unusual polyunsaturated fatty acid isomers, which appeared to interfere with the normal metabolism of naturally occurring polyunsaturated fatty acids. These concerns were summarized in an early Editorial in Am. J. Public Health, 84: 722 (1974). Therefore, there exists a strong need for a biologically active CLA product of defined composition. DESCRIPTION OF THE FIGURES FIG. 1 is a flow diagram of the alkali isomerization process of the present invention. FIG. 2 is a graph of OSI values for CLA compositions in the presence of antioxidants. SUMMARY OF THE INVENTION The present invention relates to the field of human and animal nutrition, and in particular to certain novel compositions of conjugated linoleic acids (CLA). These compositions are prepared according to a novel method that controls oxidation of CLA into volatile organic compounds and in some embodiments contain antioxidants that control oxidation. The present invention provides a composition comprising an isomerized (i.e., conjugated) linoleic acid moiety of high purity. The CLA moiety is not limited to any one specific CLA moiety. Several different moieties are contemplated by the present invention. In some embodiments, the CLA moiety is a free fatty acid. In other embodiments, the CLA moiety is an alkyl ester. In still further embodiments, the CLA moiety is a triacylglyceride. In some embodiments of the present invention, the composition further comprise a metal oxidant chelator. The present invention is not limited to any one metal oxidant chelator. A variety of metal oxidant chelators are contemplated by the present invention. In some embodiments, the metal oxidant chelator comprises citric acid esters. In other embodiments, the metal oxidant chelator comprises lecithin. The purity of the isomerized linoleic acid composition is not limited to any specific level. Several levels of purity are contemplated by the present invention. In some embodiments, the composition contains less than 100 parts per million total of volatile organic compounds. In other embodiments, the composition contains less than 50 parts per million total of volatile organic compounds. In still other embodiments, the composition contains less than 10 parts per million total of volatile organic compounds. In still further embodiments, the composition contains less than 5 parts per million total of volatile organic compounds. In some embodiments, the present invention provides a food product comprising a isomerized conjugated linoleic acid moiety of high purity and an metal oxidant chelator. The purity of the food product containing an isomerized linoleic acid composition is not limited to any specific level. Several levels of purity are contemplated by the present invention. In some embodiments, the composition contains less than 100 parts per million total of volatile organic compounds. In other embodiments, the composition contains less than 50 parts per million total of volatile organic compounds. In still other embodiments, the composition contains less than 10 parts per million total of volatile organic compounds. In further embodiments, the composition contains less than 5 parts per million total of volatile organic compounds. The CLA moiety contained in the food product of present invention is not limited to any one specific CLA moiety. Several different CLA moieties are contemplated by the present invention. In some embodiments, the CLA moiety is a free fatty acid. In other embodiments, the CLA moiety is an alkyl ester. In still further embodiments, the CLA moiety is a triacylglyceride. The present invention is not limited to any one metal oxidant chelator. A variety of metal oxidant chelators are contemplated by the present invention. In some embodiments, the metal oxidant chelator comprises citric acid esters. In other embodiments, the metal oxidant chelator comprises lecithin. In some embodiments, the present invention provides a food supplement comprising a isomerized conjugated linoleic acid moiety of high purity and an metal oxidant chelator. The purity of the food product containing an isomerized linoleic acid composition is not limited to any specific level. Several levels of purity are contemplated by the present invention. In some embodiments, the composition contains less than 100 parts per million total of volatile organic compounds. In other embodiments, the composition contains less than 50 parts per million total of volatile organic compounds. In still other embodiments, the composition contains less than 10 parts per million total of volatile organic compounds. In further embodiments, the composition contains less than 5 parts per million total of volatile organic compounds. The CLA moiety contained in the food supplement of present invention is not limited to any one specific CLA moiety. Several different CLA moieties are contemplated by the present invention. In some embodiments, the CLA moiety is a free fatty acid. In other embodiments, the moiety is an alkyl ester. In further embodiments, the CLA moiety is a triacylglyceride. The present invention is not limited to any one metal oxidant chelator. A variety of metal oxidant chelators are contemplated by the present invention. In some embodiments, the metal oxidant chelator comprises citric acid esters. In other embodiments, the metal oxidant chelator comprises lecithin. In some embodiments, the present invention provides a method comprising providing a linoleic acid containing seed oil; isomerizing the linoleic acid to form conjugated linoleic acids; and treating the conjugated linoleic acids to obtain a CLA composition of high purity. Several levels of purity are contemplated by the method of the present invention. In some embodiments, the composition less than 100 parts per million total of volatile organic compounds. In some embodiments, the CLA composition contains less than 50 parts per million total of volatile organic compounds. In other embodiments, the CLA composition contains less than 10 parts per million total of volatile organic compounds. In further embodiments, the CLA composition contains less than 5 parts per million total of volatile organic compounds. In other embodiments of the present invention, a composition is provided comprising a CLA moiety having a sufficiently low volatile organic compound concentration so that the taste and smell of said composition is not affected. In still further embodiments of the present invention, a food product is provided that comprises a conjugated linoleic acid moiety having a sufficiently low volatile organic compound concentration so that the taste and smell of the food product is not affected. Definitions As used herein, "conjugated linoleic acid" or "CLA" refers to any conjugated linoleic acid or octadecadienoic free fatty acid. It is intended that this term encompass and indicate all positional and geometric isomers of linoleic acid with two conjugated carbon-carbon double bonds any place in the molecule. CLA differs from ordinary linoleic acid in that ordinary linoleic acid has double bonds at carbon atoms 9 and 12. Examples of CLA include cis- and trans isomers ("E/Z isomers") of the following positional isomers: 2,4-octadecadienoic acid, 4,6-octadecadienoic acid, 6,8-octadecadienoic acid, 7,9-octadecadienoic acid, 8,10-octadecadienoic acid, 9,11-octadecadienoic acid and 10,12 octadecadienoic acid, 11,13 octadecadienoic acid. As used herein, "CLA" encompasses a single isomer, a selected mixture of two or more isomers, and a non-selected mixture of isomers obtained from natural sources, as well as synthetic and semisynthetic CLA. As used herein, the term "isomerized conjugated linoleic acid" refers to CLA synthesized by chemical methods (e.g., aqeuous alkali isomerization, non-aqueous alkali isomerization, or alkali alcoholate isomerization). As used herein, the term "conjugated linoleic acid moiety" refers to any compound or plurality of compounds containing conjugated linoleic acids or derivatives. Examples include, but are not limited to fatty acids, alkyl esters, and triglycerides of conjugated linoleic acid. As used herein, it is intended that "triglycerides" of CLA contain CLA at any or all of three positions (e.g., SN-1, SN-2, or SN-3 positions) on the triglyceride backbone. Accordingly, a triglyceride containing CLA may contain any of the positional and geometric isomers of CLA. As used herein, it is intended that "esters" of CLA include any and all positional and geometric isomers of CLA bound through an ester linkage to an alcohol or any other chemical group, including, but not limited to physiologically acceptable, naturally occurring alcohols (e.g., methanol, ethanol, propanol). Therefore, an ester of CLA or esterified CLA may contain any of the positional and geometric isomers of CLA. It is intended that "non-naturally occurring isomers" of CLA include, but are not limited to c11,t13; t11,c13; t11,t13; c11,c13; c8,t10; t8,c10; t8,t10; c8,c10; and trans-trans isomers of octadecadienoic acid, and does not include t10,c12 and c9,t11 isomers of octadecadienoic acid. "Non-naturally occurring isomers" may also be referred to as "minor isomers" of CLA as these isomers are generally produced in low amounts when CLA is synthesized by alkali isomerization. As used herein, "low impurity" CLA refers to CLA compositions, including free fatty acids, alkylesters, and triglycerides, which contain less than 1% total 8,10 octadecadienoic acids, 11,13 octadecadienoic acids, and trans-trans octadecadienoic acids. As used herein, "c" encompasses a chemical bond in the cis orientation, and "t" refers to a chemical bond in the trans orientation. If a positional isomer of CLA is designated without a "c" or a "t", then that designation includes all four possible isomers. For example, 10,12 octadecadienoic acid encompasses c10,t12; t10,c12; t10,t12; and c10,c12 octadecadienoic acid, while t10,c12 octadecadienoic acid or CLA refers to just the single isomer. As used herein, the term "oil" refers to a free flowing liquid containing long chain fatty acids (e.g., CLA), triglycerides, or other long chain hydrocarbon groups. The long chain fatty acids, include, but are not limited to the various isomers of CLA. As used herein, the term "physiologically acceptable carrier" refers to any carrier or excipient commonly used with oily pharmaceuticals. Such carriers or excipients include, but are not limited to, oils, starch, sucrose and lactose. As used herein, the term "oral delivery vehicle" refers to any means of delivering a pharmaceutical orally, including, but not limited to, capsules, pills, tablets and syrups. As used herein, the term "food product" refers to any food or feed suitable for consumption by humans, non-ruminant animals, or ruminant animals. The "food product" may be a prepared and packaged food (e.g., mayonnaise, salad dressing, bread, or cheese food) or an animal feed (e.g., extruded and pelleted animal feed or coarse mixed feed). "Prepared food product" means any pre-packaged food approved for human consumption. As used herein, the term "foodstuff" refers to any substance fit for human or animal consumption. As used herein, the term "volatile organic compound" refers to any carbon-containing compound which exists partially or completely in a gaseous state at a given temperature. Volatile organic compounds may be formed from the oxidation of an organic compound (e.g., CLA). Volatile organic compounds include, but are not limited to pentane, hexane, heptane, 2-butenal, ethanol, 3-methyl butanal, 4-methyl pentanone, hexanal, heptanal, 2-pentyl furan, octanal. As used herein, the term "metal oxidant chelator" refers to any antioxidant that chelates metals. Examples include, but are not limited to lecithin and citric acid esters. As used herein, the term "alcoholate catalyst" refers to alkali metal compounds of any monohydric alcohol, including, but not limited to, potassium methylate and potassium ethylate. |
PATENT EXAMPLES | This data is not available for free |
PATENT PHOTOCOPY | Available on request |
Want more information ? Interested in the hidden information ? Click here and do your request. |