Main > PROTEINS > Proteomics > Plant Proteomics > Maize Plant > Glucanase. > Endo-1,3;1,4-.Beta.-Glucanase

Product USA. U

PATENT NUMBER This data is not available for free
PATENT GRANT DATE 31.12.02
PATENT TITLE Maize endo-1,3;1,4-.beta.-glucanase nucleic acid

PATENT ABSTRACT The present invention provides, an isolated maize endoglucanase polynucleotide and compositions and methods for modulating (i.e., increasing or decreasing) the total levels of an endoglucanase protein and/or altering their ratios in plants.


--------------------------------------------------------------------------------
PATENT INVENTORS This data is not available for free
PATENT ASSIGNEE This data is not available for free
PATENT FILE DATE June 9, 1999
PATENT REFERENCES CITED Hatfield, R. and Nevins, D.J. (1986) Purification and properties of an endoglucanase isolated from the cell walls of Zea mays seedling cell walls. Carbohydr. Res. 148: 265-278.
Hatfield, R. and Nevins, D.J. (1987) Hydrolytic activity and substrate specificity of an endoglucanase from Zea mays seedling cell walls. Plant Physiol. 83: 203-207.
Hatfield, R. Nevins, D.J. (1988) Plant cell wall proteins: Plant cell wall proteins: partial characterization of maize wall proteins with putative roles in auxin-induced growth. Plant Cell Physiol. 29: 713-720.
Hoson, T. and Nevins, D.J. (1989a) .beta.-D-glucan antibodies inhibit auxin-induced cell elongation and changes in the cell wall of Zea coleoptile segments. Plant Physiol. 90: 1353-1358.
Huber, D.J. and Nevins, D.J. (1979) Autolysis of cell wall .beta.-D-glucan in corn coleoptiles. Plant Cell Physiol. 20: 201-212.
Huber, D.J. and Nevins, D.J. (1981a) Partial purification of endo-and exo-.beta.-D-glucanase enzymes from Zea mays L. seedlings and their involvement in cell-wall autohydrolysis. Planta 151: 206-214.
Huber, D.J. and Nevins, D.J. (1981b) Wall-protein antibodies as inhibitors of growth and autolytic reactions of isolated cell wall. Physiol. Plant. 53: 533-539.
Huber, D.J. and Nevins, D.J. (1982) Exoglucanases from Zea mays L. seedlings: their role in .beta.-D-glucan hydrolysis and their potential role in extension growth. Planta 155: 467-472.
Inouhe, M. and Nevins, D.J. (1991a) Auxin-enhanced glucan autohydrolysis in maize coleoptile cell wall. Plant Physiol. 96: 285-290.
Inouhe, M. and Nevins, D.J. (1991b) Inhibition of auxin-induced cell elongation of maize coleoptiles by antibodies specific for cell wall glucanases. Plant Physiol. 96: 426-431.
Inouhe, M. and Nevins, D.J. (1997a) Changes in the autolytic activities of maize coleoptile cell walls during coleoptile growth. Plant Cell Physiol. 38: 161-167.
Inouhe, M., Hayashi, K., and Nevins, DJ (1999) Polypeptide characteristics and immunological properties of exo-and endoglucanases purified from maize coleoptile cell walls. J. Plant Physiol 154(3):334-340.
Inouhe, M., Nevins DJ (1998) Changes in the activities and polypeptide levels of exo-and endoglucanases in cell walls during developmental growth of Zea mays coleoptiles. Plant Cell Physiol 39(7): 762-768.
Labrador, E. and Nevins, D.J. (1990) An exo-.beta.-D-glucanase derived from Zea coleoptile walls with a capacity to elicit cell elongation. Physiol. Plant. 77: 479-486.
Luttenegger, D.G. and Nevins, D.J. (1985) Transient nature of a (1-3),(1-4)-.beta.-D-glucan in Zea mays coleoptile cell walls. Plant Physiol. 77: 175-178.
Simmons, C.R.: The physiology and molecular biology of plant (1->3)-.beta.-D-glucanase and (1->3, 1->4) .beta.-D-glucanases. Critical Reviews in Plant Sciences 13, 325-387 (1994).
Masoud, S. A. et al., "Constitutive expression of an inducible B-!, 3-glucanase in alfalfa reduces disease severity caused by the oomycete pathogen Phytophthora magasperma f. sp medicaginis . . . " 1996, Transgenic Research, vol. 5, pp. 313-323.*
Koziel, M. G. et al., "Optimizing expression of transgenes with an emphasis on post-transcriptional events." 1996, Plant Molecular Biology, vol. 32, pp. 393-405.*
Stam, M. et al., "The Silence of Genes in Transgenic Plants." 1997, Annals of Botany, vol. 79, pp. 3-12
PATENT GOVERNMENT INTERESTS FIELD OF THE INVENTION

The present invention relates to plant molecular biology. More specifically, the present invention relates to maize exo- and endo-glucanases. Certain rights in the invention may inure to the U.S. Government by way of an N.S.F. grant to Donald J. Nevins
PATENT PARENT CASE TEXT This data is not available for free
PATENT CLAIMS What is claimed is:

1. An isolated nucleic acid encoding endo-1,3;1,4-.beta.-glucanase comprising a polynucleotide selected from the group consisting of:

(a) a polynucleotide that encodes the polypeptide of SEQ ID NO: 2;

(b) a polynucleotide encoding a polypeptide having at least 95% sequence identity to SEQ ID NO: 2, wherein the % sequence identity is based upon the entire sequence and is determined by BLAST 2.0 under default parameters;

(c) a polynucleotide comprising the sequence set forth in SEQ ID NO: 1; and

(d) a polynucleotide complementary to a polynucleotide of (a) through (c) wherein said nucleic acid encodes a polypeptide that hydrolyzes beta-glucans.

2. A vector comprising at least one nucleic acid of claim 1.

3. A recombinant expression cassette, comprising the nucleic acid of claim 1 operably linked to a promoter, wherein the nucleic acid is in the sense or antisense orientation.

4. A host cell comprising the recombinant expression cassette of claim 3.

5. A transgenic plant cell comprising the recombinant expression cassette of claim 3.

6. A transgenic plant comprising the recombinant expression cassette of claim 3.

7. The transgenic plant of claim 6, wherein the plant is a plant selected from the group consisting of maize, soybean, sunflower, sorghum, canola, wheat, alfalfa, cotton, rice, barley, and millet.

8. A transgenic seed from the transgenic plant of claim 7.

9. A method of modulating the level of endoglucanase protein in a plant, comprising;

(a) introducing into a plant a recombinant expression cassette comprising the nucleic acid of claim 1 operably linked to a promoter;

(b) regenerating the plant cell to produce a regenerated plant, thereby inducing expression of said polynucleotide for a time sufficient to modulate endoglucanase protein in said plant.

10. The method of claim 9, wherein the plant is a plant selected from the group consisting of maize, soybean, sunflower, sorghum, canola, wheat, alfalfa, cotton, rice, barley, and millet.

11. The method of claim 9, wherein the level of endoglucanase protein is increased.
--------------------------------------------------------------------------------

PATENT DESCRIPTION BACKGROUND OF THE INVENTION

Growth in plants is controlled by the mechanical properties of the cell wall, a structure that otherwise constrains cells and restricts protoplast expansion (Masuda 1990, Sakurai 1991, for review). Changes in the cell wall mechanical properties that impart "loosening" might be achieved through the breakdown and reconstitution of cross-linked polymers in the cell walls. In fact, substantial changes in cell wall components related to cell wall loosening have been reported in many plants (Taiz 1984, Sakurai 1991, Hoson 1993, for reviews). As a parallel to documented changes in cell wall components, specific enzymes capable of degrading cell wall polysaccharides have been identified from the apoplastic compartments of mono- and dicotyledonous plants (Greve and Ordin 1971, Huber and Nevins 1980, 1981a, Labrador and Nevins 1990, Dopico et al. 1990, Nishitani and Tominaga 1992, Hayashi and Ohsumi 1994).

Cereal coleoptile segments, which have served as a model for numerous growth and hormone investigations, undergo molecular changes in non-cellulosic .beta.-glucans coinciding with the initiation of growth. Physical displacement of molecular structures within the wall matrix in response to structural change in the wall is visualized as a means to accommodate pressure driven elongation governed by auxin (Masuda, 1990).

In cereals, most of the effort designed to describe the molecular events in growth has focused on disclosing the role of non-cellulosic .beta.-glucans in auxin-induced growth of coleoptile segments. Auxin causes a specific decrease in the quantity of glucans in the cell walls in vivo, a process coupled with cell elongation of coleoptile segments in oat, barley, rice and maize (Loescher and Nevins 1972, Sakurai and Masuda 1978a, Zarra and Masuda 1979b, Inouhe and Nevins 1991 a). The decrease in the wall glucan content appears to reflect an obligatory chemical basis for cell wall loosening necessary for cell elongation (Sakurai and Masuda 1978b, Sakurai et al. 1979).

Cell wall autohydrolysis, an approach used to disclose the consequences of metabolism mediated by constitutive components, has been employed to identify pertinent enzymes and their substrates. It has been reported that cell walls isolated from maize coleoptiles possess a high autohydrolytic activity (autolysis) specifically directed toward degradation of non-cellulosic .beta.-glucans eventually producing glucose (Huber and Nevins 1979). This process is mediated by wall associated exoglucanase (EC 1.2.3.58, Huber and Nevins 1982) and endoglucanase (Huber and Nevins 1981a, Hat field and Nevins 1986, 1987). The two enzymic activities account for 90% of all the recovered glucanase from maize coleoptile cell walls (Inouhe and Nevins 1991b). The endoglucanase converts the non-cellulosic .beta.-glucans to polymers of an average molecular size of 1-1.5.times.10.sup.4 (degree of polymerization of 60-70) and indicates that the endo-glucanase cleaves widely-spaced sites. Auxin is capable of enhancing glucan autolysis in maize coleoptile cell walls (Inouhe and Nevins 1991 a). In addition, polyclonal antibodies specific for cell wall glucanases inhibit the glucan autolysis and auxin-induced growth of maize coleoptile segments (Inouhe and Nevins 1991b). These observations provide evidence to support the idea that the cell wall glucanases have an important role in auxin-induced cell elongation in coleoptile segments.

Notable changes in cell wall glucan content have also been reported in coleoptile tissues developing in intact seedlings of maize (Luttenegger and Nevins 1985), barley (Sakurai and Masuda 1978b), and rice (Zarra and Masuda 1979a). In maize coleoptiles, the non-cellulosic glucans are rapidly synthesized and incorporated into cell walls during early developmental stage but subsequently are degrated to substantially diminished levels after completion of elongation (Luttenegger and Nevins 1985, Inouhe and Nevins 1997a). These data imply that the glucan metabolism mediated by cell wall glucanases is an important phase in coleoptile growth in the intact plant system. However, little is known about changes in cell wall glucanases during coleoptile development, although the timing and spatial distribution of glucanases have been investigated in detail in germinating seeds or leaves of barley seedlings (Mundy and Fincher 1986, Stuart et al. 1986, Slakeski and Fincher 1992a, b).

Diverse glucanases have been isolated from plant sources (Simmons, 1994) and some genes have been identified (Hoj and Fincher, 1995). Information on the precise characteristics of those gene responsible for glucanases in coleoptiles with putative roles in cell extension is, however, not available. Specifically, exo- and endoglucanases from maize have not been isolated or purified until the present invention.

The composition of plant stem material has a strong influence on the feeding quality of major forage crops. Forages contain significant portions of plant cell wall material. From the standpoint of a forage user, the amount and type of plant cell wall is extremely important because it greatly influences how a particular forage will be utilized by animals to produce meat or milk. In silages such as whole plant corn, alfalfa, and the like, the digestibility of the silage is important to ensure availability of the fiber, and/or providing more nutrients per amount of silage at a faster rate. Therefore cell wall constituents are very important in the feeding of animals to produce meat or milk.

SUMMARY OF THE INVENTION

In the present invention, both exo- and endoglucanases were purified and extracted from maize coleoptile cell walls. New maize endoglucanase polynucleotides and related polypeptides were identified. Now by altering expression or modulation of the newly identified maize endoglucanases, one is able to alter the composition of cell walls thereby facilitating cell elongation or expansion and thus altering the growth of a plant or improving kernel growth rates. In addition, alterations in cell wall composition can enhancing silage or forage crop digestibility.

Generally, it is the object of the present invention to provide nucleic acids and proteins relating to endoglucanases. It is an object of the present invention to provide transgenic plants comprising the nucleic acids of the present invention. It is another object of the present invention to provide methods for modulating, in a transgenic plant, the expression of the nucleic acids of the present invention.

Therefore, in one aspect, the present invention relates to an isolated nucleic acid comprising a member selected from the group consisting of (a) a polynucleotide encoding a polypeptide of the present invention; (b) a polynucleotide amplified from a Zea mays nucleic acid library using primers designed from the polynucleotides of the present invention; (c) a polynucleotide comprising at least 20 contiguous bases of the polynucleotides of the present invention; (d) a polynucleotide having at least 80% sequence identity to the polynucleotides of the present invention, where sequence identity is determined by Blast 2.0 under default parameters; (e) a polynucleotide comprising at least 25 nucleotide in length which hybridizes under low stringency conditions to the polynucleotides of the present invention; (f) a polynucleotide comprising the sequence set forth in SEQ ID NO: 1; and (g) a polynucleotide complementary to a polynucleotide of (a) through (f). The isolated nucleic acid can be DNA. The isolated nucleic acid can also be RNA.

In another aspect, the present invention relates to vectors comprising the polynucleotides of the present invention. Also the present invention relates to recombinant expression cassettes, comprising a nucleic acid of the present invention operably linked to a promoter.

In another aspect, the present invention is directed to a host cell into which has been introduced the recombinant expression cassette.

In yet another aspect, the present invention relates to a transgenic plant or plant cell comprising a recombinant expression cassette with a promoter operably linked to any of the isolated nucleic acids of the present invention. Preferred plants containing the recombinant expression cassette of the present invention include but are not limited to maize, soybean, sunflower, sorghum, canola, wheat, alfalfa, cotton, rice, barley, and millet. The present invention also provides transgenic seed from the transgenic plant.

In another aspect, the present invention relates to an isolated protein selected from the group consisting of (a) a polypeptide comprising at least 25 contiguous amino acids of SEQ ID NO: 2; (b) a polypeptide comprising at least 80% sequence identity to SEQ ID NO: 2 where the % sequence identity is determined by BLAST 2.0 using default parameters; (c) a polypeptide encoded by a nucleic acid of the present invention; and (d) a polypeptide characterized by SEQ ID NO: 2.

In further aspect, the present invention relates to a method of modulating the level of protein in a plant by introducing into a plant cell a recombinant expression cassette comprising a polynucleotide of the present invention operably linked to a promoter; culturing the plant cell under plant growing conditions to produce a regenerated plant; and inducing expression of the polynucleotide for a time sufficient to modulate the protein of the present invention in the plant. Preferred plants of the present invention include but are not limited to maize, soybean, sunflower, sorghum, canola, wheat, alfalfa, cotton, rice, barley, and millet. The level of protein in the plant can either be increased or decreased.

DEFINITIONS

Units, prefixes, and symbols may be denoted in their SI accepted form. Unless otherwise indicated, nucleic acids are written left to right in 5' to 3' orientation; amino acid sequences are written left to right in amino to carboxy orientation, respectively. Numeric ranges are inclusive of the numbers defining the range. Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes. The terms defined below are more fully defined by reference to the specification as a whole.

By "amplified" is meant the construction of multiple copies of a nucleic acid sequence or multiple copies complementary to the nucleic acid sequence using at least one of the nucleic acid sequences as a template. Amplification systems include the polymerase chain reaction (PCR) system, ligase chain reaction (LCR) system, nucleic acid sequence based amplification (NASBA, Cangene, Mississauga, Ontario), Q-Beta Replicase systems, transcription-based amplification system (TAS), and strand displacement amplification (SDA). See, e.g., Diagnostic Molecular Microbiology: Principles and Applications, D. H. Persing et al., Ed., American Society for Microbiology, Washington, D.C. (1993). The product of amplification is termed an ampliconThe term "antibody" includes reference to antigen binding forms of antibodies (e.g., Fab, F(ab).sub.2). The term "antibody" frequently refers to a polypeptide substantially encoded by an immunoglobulin gene or immunoglobulin genes, or fragments thereof which specifically bind and recognize an analyte (antigen). However, while various antibody fragments can be defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized de novo either chemically or by utilizing recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments such as single chain Fv, chimeric antibodies (i.e., comprising constant and variable regions from different species), humanized antibodies (i.e., comprising a complementarity determining region (CDR) from a non-human source) and heteroconjugate antibodies (e.g., bispecific antibodies).

The term "antigen" includes reference to a substance to which an antibody can be generated and/or to which the antibody is specifically immunoreactive. The specific immunoreactive sites within the antigen are known as epitopes or antigenic determinants. These epitopes can be a linear array of monomers in a polymeric composition--such as amino acids in a protein--or consist of or comprise a more complex secondary or tertiary structure. Those of skill will recognize that all immunogens (i.e., substance capable of eliciting an immune response) are antigens; however some antigens, such as haptens, are not immunogens but may be made immunogenic by coupling to a carrier molecule. An antibody immunologically reactive with a particular antigen can be generated in vivo or by recombinant methods such as selection of libraries of recombinant antibodies in phage or similar vectors. See, e.g., Huse et al., Science 246: 1275-1281 (1989); and Ward, et al., Nature 341: 544-546 (1989); and Vaughan et al., Nature Biotech. 14: 309-314 (1996).

As used herein, "antisense orientation" includes reference to a duplex polynucleotide sequence which is operably linked to a promoter in an orientation where the antisense strand is transcribed. The antisense strand is sufficiently complementary to an endogenous transcription product such that translation of the endogenous transcription product is often inhibited.

As used herein, "chromosomal region" includes reference to a length of chromosome which may be measured by reference to the linear segment of DNA which it comprises. The chromosomal region can be defined by reference to two unique DNA sequences, i.e., markers.

The term "conservatively modified variants" applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or conservatively modified variants of the amino acid sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are "silent variations" and represent one species of conservatively modified variation. Every nucleic acid sequence herein which encodes a polyp eptide also describes every possible silent variation of the nucleic acid. One of ordinary skill will recognize that each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine) can be modified to yield a functionally identical molecule. Accordingly, each silent variation of a nucleic acid which encodes a polypeptide of the present invention is implicit in each described polypeptide sequence and incorporated herein by reference.

As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Thus, any number of amino acid residues selected from the group of integers consisting of from 1 to 15 can be so altered. Thus, for example, 1, 2, 3, 4, 5, 7, or 10 alterations can be made. Conservatively modified variants typically provide similar biological activity as the umnmodified polypeptide sequence from which they are derived. For example, substrate specificity, enzyme activity, or ligand/receptor binding is generally at least 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the native protein for it's native substrate. Conservative substitution tables providing functionally similar amino acids are well known in the art.

The following six groups each contain amino acids that are conservative substitutions for one another:

1) Alanine (A), Serine (S), Threonine (T);

2) Aspartic acid (D), Glutamic acid (E);

3) Asparagine (N), Glutamine (Q);

4) Arginine (R), Lysine (K);

5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and

6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).

See also, Creighton (1984) Proteins W. H. Freeman and Company.

As used herein, "consisting essentially of" means the inclusion of additional sequences to an object polynucleotide where the additional sequences do not selectively hybridize, under stringent hybridization conditions, to the same cDNA as the polynucleotide and where the hybridization conditions include a wash step in 0.1.times.SSC at 60.degree. C.

By "encoding" or "encoded", with respect to a specified nucleic acid, is meant comprising the information for translation into the specified protein. A nucleic acid encoding a protein may comprise non-translated sequences (e.g., introns) within translated regions of the nucleic acid, or may lack such intervening non-translated sequences (e.g., as in cDNA). The information by which a protein is encoded is specified by the use of codons. Typically, the amino acid sequence is encoded by the nucleic acid using the "universal" genetic code. However, variants of the universal code, such as is present in some plant, animal, and fungal mitochondria, the bacterium Mycoplasma capricolum (Proc. Natl. Acad. Sci. (USA), 82: 2306-2309 (1985)), or the ciliate Macronucleus, may be used when the nucleic acid is expressed using these organisms.

When the nucleic acid is prepared or altered synthetically, advantage can be taken of known codon preferences of the intended host where the nucleic acid is to be expressed. For example, although nucleic acid sequences of the present invention may be expressed in both monocotyledonous and dicotyledonous plant species, sequences can be modified to account for the specific codon preferences and GC content preferences of monocotyledons or dicotyledons as these preferences have been shown to differ (Murray et al. Nucl. Acids Res. 17: 477-498 (1989)). Thus, the maize preferred codon for a particular amino acid may be derived from known gene sequences from maize. Maize codon usage for 28 genes from maize plants are listed in Table 4 of Murray et al., supra.

As used herein "full-length sequence" in reference to a specified polynucleotide or its encoded protein means having the entire amino acid sequence of, a native (non-synthetic), endogenous, catalytically active form of the specified protein. A full-length sequence can be determined by size comparison relative to a control which is a native (non-synthetic) endogenous cellular form of the specified nucleic acid or protein. Methods to determine whether a sequence is full-length are well known in the art including such exemplary techniques as northern or western blots, primer extension, S1 protection, and ribonuclease protection. See, e.g., Plant Molecular Biology: A Laboratory Manual, Clark, Ed., Springer-Verlag, Berlin (1997). Comparison to known full-length homologous (orthologous and/or paralogous) sequences can also be used to identify full-length sequences of the present invention. Additionally, consensus sequences typically present at the 5' and 3' untranslated regions of MRNA aid in the identification of a polynucleotide as full-length. For example, the consensus sequence ANNNNAUGG, where the underlined codon represents the N-terminal methionine, aids in determining whether the polynucleotide has a complete 5' end. Consensus sequences at the 3' end, such as polyadenylation sequences, aid in determining whether the polynucleotide has a complete 3' end.

As used herein, "heterologous" in reference to a nucleic acid is a nucleic acid that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention. For example, a promoter operably linked to a heterologous structural gene is from a species different from that from which the structural gene was derived, or, if from the same species, one or both are substantially modified from their original form. A heterologous protein may originate from a foreign species or, if from the same species, is substantially modified from its original form by deliberate human intervention.

By "host cell" is meant a cell which contains a vector and supports the replication and/or expression of the expression vector. Host cells may be prokaryotic cells such as E. coli, or eukaryotic cells such as yeast, insect, amphibian, or mammalian cells. Preferably, host cells are monocotyledonous or dicotyledenous plant cells. A particularly preferred monocotolydenous host cell is a maize host cell.

The term "hybridization complex" includes reference to a duplex nucleic acid structure formed by two single-stranded nucleic acid sequences selectively hybridized with each other.

The term "introduced" in the context of inserting a nucleic acid into a cell, means "transfection" or "transformation" or "transduction" and includes reference to the incorporation of a nucleic acid into a eukaryotic or prokaryotic cell where the nucleic acid may be incorporated into the genome of the cell (e.g., chromosome, plasmid, plastid or mitochondrial DNA), converted into an autonomous replicon, or transiently expressed (e.g., transfected MRNA).

The terms "isolated" refers to material, such as a nucleic acid or a protein, which is: (1) substantially or essentially free from components which normally accompany or interact with it as found in its naturally occurring environment. The isolated material optionally comprises material not found with the material in its natural environment; or (2) if the material is in its natural environment, the material has been synthetically (non-naturally) altered by deliberate human intervention to a composition and/or placed at a locus in the cell (e.g., genome or subcellular organelle) not native to a material found in that environment. The alteration to yield the synthetic material can be performed on the material within or removed from its natural state. For example, a naturally occurring nucleic acid becomes an isolated nucleic acid if it is altered, or if it is transcribed from DNA which has been altered, by non-natural, synthetic (i.e., "man-made") methods performed within the cell from which it originates. See, e.g., Compounds and Methods for Site Directed Mutagenesis in Eukaryotic Cells, Kmiec, U.S. Pat. No. 5,565,350; In Vivo Homologous Sequence Targeting in Eukaryotic Cells; Zarling et al., PCTJUS93/03868. Likewise, a naturally occurring nucleic acid (e.g., a promoter) becomes isolated if it is introduced by non-naturally occurring means to a locus of the genome not native to that nucleic acid. Nucleic acids which are "isolated" as defined herein, are also referred to as "heterologous" nucleic acids.

Unless otherwise stated, the term "exo- or endoglucanase nucleic acid" means a nucleic acid comprising a polynucleotide ("exo- or endoglucanase polynucleotide") encoding a exo- or endoglucanase polypeptide. A "exo- or endoglucanase gene" refers to a non-heterologous genomic form of a full-length exo- or endoglucanase polynucleotide.

As used herein, "localized within the chromosomal region defined by and including" with respect to particular markers includes reference to a contiguous length of a chromosome delimited by and including the stated markers.

As used herein, "marker" includes reference to a locus on a chromosome that serves to identify a unique position on the chromosome. A "polymorphic marker" includes reference to a marker which appears in multiple forms (alleles) such that different forms of the marker, when they are present in a homologous pair, allow transmission of each of the chromosomes in that pair to be followed. A genotype may be defined by use of one or a plurality of markers.

As used herein, "nucleic acid" includes reference to a deoxyribonucleotide or ribonucleotide polymer in either single- or double-stranded form, and unless otherwise limited, encompasses known analogues having the essential nature of natural nucleotides in that they hybridize to single-stranded nucleic acids in a manner similar to naturally occurring nucleotides (e.g., peptide nucleic acids).

By "nucleic acid library" is meant a collection of isolated DNA or RNA molecules which comprise and substantially represent the entire transcribed fraction of a genome of a specified organism. Construction of exemplary nucleic acid libraries, such as genomic and cDNA libraries, is taught in standard molecular biology references such as Berger and Kimmel, Guide to Molecular Cloning Techniques, Methods in Enzymology, Vol. 152, Academic Press, Inc., San Diego, Calif. (Berger); Sambrook et al., Molecular Cloning--A Laboratory Manual, 2nd ed., Vol. 1-3 (1989); and Current Protocols in Molecular Biology, F. M. Ausubel et al., Eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc. (1994 Supplement).

As used herein "operably linked" includes reference to a functional linkage between a promoter and a second sequence, wherein the promoter sequence initiates and mediates transcription of the DNA sequence corresponding to the second sequence. Generally, operably linked means that the nucleic acid sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in the same reading frame.

As used herein, the term "plant" includes reference to whole plants, plant organs (e.g., leaves, stems, roots, etc.), seeds and plant cells and progeny of same. Plant cell, as used herein includes, without limitation, seeds, suspension cultures, embryos, meristematic regions, callus tissue, leaves, roots, shoots, gametophytes, sporophytes, pollen, and microspores. The class of plants, which can be used in the methods of the invention, is generally as broad as the class of higher plants amenable to transformation techniques, including both monocotyledonous and dicotyledonous plants. Preferred plants include, but are not limited to maize, soybean, sunflower, sorghum, canola, wheat, alfalfa, cotton, rice, barley, and millet. A particularly preferred plant is maize (Zea mays).

As used herein, "polynucleotide" includes reference to a deoxyribopolynucleotide, ribopolynucleotide, or analogs thereof that have the essential nature of a natural ribonucleotide in that they hybridize, under stringent hybridization conditions, to substantially the same nucleotide sequence as naturally occurring nucleotides and/or allow translation into the same amino acid(s) as the naturally occurring nucleotide(s). A polynucleotide can be full-length or a subsequence of a native or heterologous structural or regulatory gene. Unless otherwise indicated, the term includes reference to the specified sequence as well as the complementary sequence thereof. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotides" as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples, are polynucleotides as the term is used herein. It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of skill in the art. The term polynucleotide as it is employed herein embraces such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including among other things, simple and complex cells.

The terms "polypeptide", "peptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers. The essential nature of such analogues of naturally occurring amino acids is that, when incorporated into a protein, that protein is specifically reactive to antibodies elicited to the same protein but consisting entirely of naturally occurring amino acids. The terms "polypeptide", "peptide" and "protein" are also inclusive of modifications including, but not limited to, glycosylation, lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation. Exemplary modifications are described in most basic texts, such as, Proteins--Structure and Molecular Properties, 2nd ed., T. E. Creighton, W. H. Freeman and Company, New York (1993). Many detailed reviews are available on this subject, such as, for example, those provided by Wold, F., Posttranslational Protein Modifications: Perspectives and Prospects, pp. 1-12 in Posttranslational Covalent Modification of proteins, B. C. Johnson, Ed., Academic Press, New York (1983); Seifter et al., Meth. Enzymol. 182: 626-646 (1990) and Rattan et al., Protein Synthesis: Posttranslational Modifications and Aging, Ann. N.Y. Acad. Sci. 663: 48-62 (1992). It will be appreciated, as is well known and as noted above, that polypeptides are not always entirely linear. For instance, polypeptides may be branched as a result of ubiquitination, and they may be circular, with or without branching, generally as a result of posttranslation events, including natural processing event and events brought about by human manipulation which do not occur naturally. Circular, branched and branched circular polypeptides may be synthesized by non-translation natural process and by entirely synthetic methods, as well. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. In fact, blockage of the amino or carboxyl group in a polypeptide, or both, by a covalent modification, is common in naturally occurring and synthetic polypeptides and such modifications may be present in polypeptides of the present invention, as well. For instance, the amino terminal residue of polypeptides made in E. coli or other cells, prior to proteolytic processing, almost invariably will be N-formylmethionine. During post-translational modification of the peptide, a methionine residue at the NH.sub.2 -terminus may be deleted. Accordingly, this invention contemplates the use of both the methionine-containing and the methionineless amino terminal variants of the protein of the invention. In general, as used herein, the term polypeptide encompasses all such modifications, particularly those that are present in polypeptides synthesized by expressing a polynucleotide in a host cell.

As used herein "promoter" includes reference to a region of DNA upstream from the start of transcription and involved in recognition and binding of RNA polymerase and other proteins to initiate transcription. A "plant promoter" is a promoter capable of initiating transcription in plant cells whether nor not its origin is a plant cell. Exemplary plant promoters include, but are not limited to, those that are obtained from plants, plant viruses, and bacteria which comprise genes expressed in plant cells such Agrobacterium or Rhizobium. Examples of promoters under developmental control include promoters that preferentially initiate transcription in certain tissues, such as leaves, roots, or seeds. Such promoters are referred to as "tissue preferred". Promoters which initiate transcription only in certain tissue are referred to as "tissue specific". A "cell type" specific promoter primarily drives expression in certain cell types in one or more organs, for example, vascular cells in roots or leaves. An "inducible" or "repressible" promoter is a promoter, which is under environmental control. Examples of environmental conditions that may effect transcription by inducible promoters include anaerobic conditions or the presence of light. Tissue specific, tissue preferred, cell type specific, and inducible promoters constitute the class of "non-constitutive" promoters. A "constitutive" promoter is a promoter, which is active under most environmental conditions.

The term "exo- or endoglucanase polypeptide" refers to one or more amino acid sequences, in glycosylated or non-glycosylated form, involved in the exo- or endoglucanase pathway. The term is also inclusive of fragments, variants, homologs, alleles or precursors (e.g., preproproteins or proproteins) thereof. A "exo- or endoglucanase protein" comprises a exo- or endoglucanase polypeptide.

As used herein "recombinant" includes reference to a cell or vector, that has been modified by the introduction of a heterologous nucleic acid or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found in identical form within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all as a result of deliberate human intervention. The term "recombinant" as used herein does not encompass the alteration of the cell or vector by naturally occurring events (e.g., spontaneous mutation, natural transformation/transduction/transposition) such as those occurring without deliberate human intervention.

As used herein, a "recombinant expression cassette" is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements which permit transcription of a particular nucleic acid in a target cell. The recombinant expression cassette can be incorporated into a plasmid, chromosome, mitochondrial DNA, plastid DNA, virus, or nucleic acid fragment. Typically, the recombinant expression cassette portion of an expression vector includes, among other sequences, a nucleic acid to be transcribed, and a promoter.

The term "residue" or "amino acid residue" or "amino acid" are used interchangeably herein to refer to an amino acid that is incorporated into a protein, polypeptide, or peptide (collectively "protein"). The amino acid may be a naturally occurring amino acid and, unless otherwise limited, may encompass known analogs of natural amino acids that can function in a similar manner as naturally occurring amino acids.

The term "selectively hybridizes" includes reference to hybridization, under stringent hybridization conditions, of a nucleic acid sequence to a specified nucleic acid target sequence to a detectably greater degree (e.g., at least 2-fold over background) than its hybridization to non-target nucleic acid sequences and to the substantial exclusion of non-target nucleic acids. Selectively hybridizing sequences typically have about at least 80% sequence identity, preferably 90% sequence identity, and most preferably 100% sequence identity (i.e., complementary) with each other.

The terms "stringent conditions" or "stringent hybridization conditions" includes reference to conditions under which a probe will hybridize to its target sequence, to a detectably greater degree than other sequences (e.g., at least 2-fold over background). Stringent conditions are sequence-dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences can be identified which are up to 100% complementary to the probe (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing). Optimally, the probe is approximately 500 nucleotides in length, but can vary greatly in length from less than 500 nucleotides to equal to the entire length of the target sequence.

Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30.degree. C. for short probes (e.g., 10 to 50 nucleotides) and at least about 60.degree. C. for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCl, 1% SDS (sodium dodecyl sulphate) at 37.degree. C., and a wash in 1.times. to 2.times.SSC (20.times.SSC=3.0 M NaCl/0.3 M trisodium citrate) at 50 to 55.degree. C. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1 M NaCl, 1% SDS at 37.degree. C., and a wash in 0.5.times. to 1.times.SSC at 55 to 60.degree. C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37.degree. C., and a wash in 0.1.times. SSC at 60 to 65.degree. C. Unless otherwise stated, in the present application high stringency is defined as hybridization in 4.times.SSC, 5.times.Denhardt's (5 g Ficoll, 5 g polyvinypyrrolidone, 5 g bovine serum albumin in 500 ml of water), 0.1 mg/ml boiled salmon sperm DNA, and 25 mM Na phosphate at 65.degree. C., and a wash in 0.1.times.SSC, 0.1% SDS at 65.degree. C.

Specificity is typically the function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. For DNA-DNA hybrids, the T.sub.m can be approximated from the equation of Meinkoth and Wahl, Anal. Biochem., 138:267-284 (1984): T.sub.m =81.5.degree. C.+16.6 (log M)+0.41 (%GC)-0.61 (% form)-500/L; where M is the molarity of monovalent cations, %GC is the percentage of guanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. The T.sub.m is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. T.sub.m is reduced by about 1.degree. C. for each 1% of mismatching; thus, T.sub.m, hybridization and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with .gtoreq.90% identity are sought, the T.sub.m can be decreased 10.degree. C. Generally, stringent conditions are selected to be about 5.degree. C. lower than the thermal melting point (T.sub.m) for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3, or 4.degree. C. lower than the thermal melting point (T.sub.m); moderately stringent conditions can can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10.degree. C. lower than the thermal melting point (T.sub.m); low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, 15, or 20.degree. C. lower than the thermal melting point (T.sub.m). Using the equation, hybridization and wash compositions, and desired T.sub.m, those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatchng results in a T.sub.m of less than 45.degree. C. (aqueous solution) or 32.degree. C. (formamide solution) it is preferred to increase the SSC concentration so that a higher temperature can be used. An extensive guide to the hybridization of nucleic acids is found in Tijssen, Laboratory Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Acid Probes, Part I, Chapter 2 "Overview of principles of hybridization and the strategy of nucleic acid probe assays", Elsevier, N.Y. (1993); and Current Protocols in Molecular Biology, Chapter 2, Ausubel, et al., Eds., Greene Publishing and Wiley-Interscience, New York (1995).

As used herein, "transgenic plant" includes reference to a plant which comprises within its genome a heterologous polynucleotide. Generally, the heterologous polynucleotide is stably integrated within the genome such that the polynucleotide is passed on to successive generations. The heterologous polynucleotide may be integrated into the genome alone or as part of a recombinant expression cassette. "Transgenic" is used herein to include any cell, cell line, callus, tissue, plant part or plant, the genotype of which has been altered by the presence of heterologous nucleic acid including those transgenics initially so altered as well as those created by sexual crosses or asexual propagation from the initial transgenic. The term "transgenic" as used herein does not encompass the alteration of the genome (chromosomal or extra-chromosomal) by conventional plant breeding methods or by naturally occurring events such as random cross-fertilization, non-recombinant viral infection, non-recombinant bacterial transformation, non-recombinant transposition, or spontaneous mutation.

As used herein, "vector" includes reference to a nucleic acid used in transfection or transformation of a host cell and into which can be inserted a polynucleotide. Vectors are often replicons. Expression vectors permit transcription and translation of a nucleic acid inserted therein.

The following terms are used to describe the sequence relationships between two or more nucleic acids or polynucleotides: (a) "reference sequence", (b) "comparison window", (c) "sequence identity", (d) "percentage of sequence identity", and (e) "substantial identity".

(a) As used herein, "reference sequence" is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a full-length cDNA or gene sequence, or the complete cDNA or gene sequence.

(b) As used herein, "comparison window" means includes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence may be compared to a reference sequence and wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Generally, the comparison window is at least 20 contiguous nucleotides in length, and optionally can be 30, 40, 50, 100, or longer. Those of skill in the art understand that to avoid a high similarity to a reference sequence due to inclusion of gaps in the polynucleotide sequence a gap penalty is typically introduced and is subtracted from the number of matches.

Methods of alignment of nucleotide and amino acid sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison may be conducted by the local homology algorithm (Best Fit) of Smith and Waterman, Adv. Appl. Math. 2: 482 (1981); by the homology alignment algorithm (GAP) of Needleman and Wunsch, J. Mol. Biol. 48: 443 (1970); by the search for similarity method (Tfasta and Fasta) of Pearson and Lipman, Proc. Natl. Acad. Sci. 85: 2444 (1988); by computerized implementations of these algorithms, including, but not limited to: CLUSTAL in the PC/Gene program by Intelligenetics, Mountain View, Calif., GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, Wis., USA; the CLUSTAL program is well described by Higgins and Sharp, Gene 73: 237-244 (1988); Higgins and Sharp, CABIOS 5: 151-153 (1989); Corpet, et al., Nucleic Acids Research 16: 10881-90 (1988); Huang, et al., Computer Applications in the Biosciences 8: 155-65 (1992), and Pearson, et al., Methods in Molecular Biology 24: 307-331 (1994). The preferred program to use for optimal global alignment of multiple sequences is PileUp (Feng and Doolittle, Journal of Molecular Evolution, 25:351-360 (1987) which is similar to the method described by Higgins and Sharp, CABIOS, 5:151-153 (1989) and hereby incorporated by reference). The BLAST family of programs which can be used for database similarity searches includes: BLASTN for nucleotide query sequences against nucleotide database sequences; BLASTX for nucleotide query sequences against protein database sequences; BLASTP for protein query sequences against protein database sequences; TBLASTN for protein query sequences against nucleotide database sequences; and TBLASTX for nucleotide query sequences against nucleotide database sequences. See, Current Protocols in Molecular Biology, Chapter 19, Ausubel, et al., Eds., Greene Publishing and Wiley-Interscience, New York (1995).

Unless otherwise stated, sequence identity/similarity values provided herein refer to the value obtained using the BLAST 2.0 suite of programs using default parameters (Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997)). Software for performing BLAST analyses is publicly available, e.g., through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). Forsamino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).

In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance.

BLAST searches assume that proteins can be modeled as random sequences. However, many real proteins comprise regions of nonrandom sequences which may be homopolymeric tracts, short-period repeats, or regions enriched in one or more amino acids. Such low-complexity regions may be aligned between unrelated proteins even though other regions of the protein are entirely dissimilar. A number of low-complexity filter programs can be employed to reduce such low-complexity alignments. For example, the SEG (Wooten and Federhen, Comput. Chem., 17:149-163 (1993)) and XNU (Claverie and States, Comput. Chem., 17:191-201 (1993)) low-complexity filters can be employed alone or in combination.

(c) As used herein, "sequence identity" or "identity" in the context of two nucleic acid or polypeptide sequences includes reference to the residues in the two sequences which are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g. charge or hydrophobicity) and therefore do not change the functional properties of the molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences which differ by such conservative substitutions are said to have "sequence similarity" or "similarity". Means for making this adjustment are well-known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a fall mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., according to the algorithm of Meyers and Miller, Computer Applic. Biol. Sci., 4: 11-17 (1988) e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, Calif., USA).

(d) As used herein, "percentage of sequence identity" means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.

(e) (i) The term "substantial identity" of polynucleotide sequences means that a polynucleotide comprises a sequence that has at least 70% sequence identity, preferably at least 80%, more preferably at least 90% and most preferably at least 95%, compared to a reference sequence using one of the alignment programs described using standard parameters. One of skill will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning and the like. Substantial identity of amino acid sequences for these purposes normally means sequence identity of at least 60%, more preferably at least 70%, 80%, 90%, and most preferably at least 95%.

Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other under stringent conditions. However, nucleic acids which do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This may occur, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. One indication that two nucleic acid sequences are substantially identical is that the polypeptide which the first nucleic acid encodes is immunologically cross reactive with the polypeptide encoded by the second nucleic acid.

(e) (ii) The terms "substantial identity" in the context of a peptide indicates that a peptide comprises a sequence with at least 70% sequence identity to a reference sequence, preferably 80%, more preferably 85%, most preferably at least 90% or 95% sequence identity to the reference sequence over a specified comparison window. Optionally, optimal alignment is conducted using the homology alignment algorithm of Needleman and Wunsch, J Mol. Biol. 48: 443 (1970). An indication that two peptide sequences are substantially identical is that one peptide is immunologically reactive with antibodies raised against the second peptide. Thus, a peptide is substantially identical to a second peptide, for example, where the two peptides differ only by a conservative substitution. Peptides which are "substantially similar" share sequences as noted above except that residue positions which are not identical may differ by conservative amino acid changes.

PATENT EXAMPLES This data is not available for free
PATENT PHOTOCOPY Available on request

Want more information ?
Interested in the hidden information ?
Click here and do your request.


back