PATENT NUMBER | This data is not available for free |
PATENT GRANT DATE | April 2, 2002 |
PATENT TITLE |
2,4-dicyanoglutarimides negative charge control agents for electrostatographic toners and developers |
PATENT ABSTRACT |
The invention, in its broader aspects provides an electrophotographic toner having polymeric binder and 2,4-dicyanoglutarimide negative charge control agents represented by the following formula: ##STR1## wherein R.sup.1 and R.sup.2 are defined in the specification. |
PATENT INVENTORS | This data is not available for free |
PATENT ASSIGNEE | This data is not available for free |
PATENT FILE DATE | September 14, 2000 |
PATENT CLAIMS |
What is claimed is: 1. A toner composition comprising a polymeric binder and, as a charge control agent, at least one 2,4-dicyanoglutarimide compound, in an amount within the range of about 0.2 to 10.0 parts per hundred parts of the binder polymer, which 2,4-dicyanoglutarimide compound is represented by the following structure: ##STR69## where R.sup.1 and R.sup.2 are the same or different and may be hydrogen; unsubstituted or substituted alkyl containing from 1-18 carbon atoms; unsubstituted or substituted aryl containing from 6 to 14 carbon atoms, unsubstituted or substituted heterocyclic ring systems; or wherein R.sup.1 and R.sup.2 form an unsubstituted or substituted ring system, wherein the aforementioned substituted moieties have at least one substituent selected from the group consisting of halo, hydroxyl, alkyl, alkoxy, thioalkyl, amino, nitro, unsubstituted or substituted aryl, unsaturated hydrocarbon groups, and combinations thereof. 2. The toner of claim 1 wherein R.sup.1 and R.sup.2 are the same or different and comprises at least one alkyl group having 1 to 8 carbon atoms and at least one substituted or unsubstituted phenyl or heterocyclic group, or where R.sup.1 and R.sup.2 form a multicyclic aliphatic ring system. 3. The toner of claim 1 wherein R.sup.1 and R.sup.2 are the same or different and at least one of R.sup.1 and R.sup.2 is selected from the group consisting of methyl, ethyl, propyl, butyl, ethylhexyl, octadecyl, or R.sup.1 and R.sup.2 form the following ring system: ##STR70## 4. A toner composition according to claim 1 wherein the binder is a polyester having a glass transition temperature of 40.degree. to 120.degree. C. and a weight average molecular weight of 2,000 to 150,000. 5. A toner composition according to claim 1 wherein the binder is a polyester that is the reaction product of a dicarboxylic acid and a polyol blend of etherified diphenols. 6. A toner composition according to claim 5 wherein the binder is a poly(etherified bisphenol A fumarate). 7. An electrostatographic developer comprising a carrier and a toner composition according to claim 1. 8. A method of forming an electrophotographic image employing a toner composition according to claim 1. |
PATENT DESCRIPTION |
FIELD OF THE INVENTION The present invention relates to electrostatographic developers and toners containing charge-control agents. BACKGROUND OF THE INVENTION In electrography, image charge patterns are formed on a support and are developed by treatment with an electrographic developer containing marking particles which are attracted to the charge patterns. These particles are called toner particles or, collectively, toner. Two major types of developers, dry and liquid, are employed in the development of the charge patterns. In electrostatography, the image charge pattern, also referred to as an electrostatic latent image, is formed on an insulative surface of an electrostatographic element by any of a variety of methods. For example, the electrostatic latent image may be formed electrophotographically, by imagewise photo-induced dissipation of the strength of portions of an electrostatic field of uniform strength previously formed on the surface of an electrophotographic element comprising a photoconductive layer and an electrically conductive substrate. Alternatively, the electrostatic latent image may be formed by direct electrical formation of an electrostatic field pattern on a surface of a dielectric material. One well-known type of electrostatographic developer comprises a dry mixture of toner particles and carrier particles. Developers of this type are employed in cascade and magnetic brush electrostatographic development processes. The toner particles and carrier particles differ triboelectrically, such that during mixing to form the developer, the toner particles acquire a charge of one polarity and the carrier particles acquire a charge of the opposite polarity. The opposite charges cause the toner particles to cling to the carrier particles. During development, the electrostatic forces of the latent image, sometimes in combination with an additional applied field, attract the toner particles. The toner particles are pulled away from the carrier particles and become electrostatically attached, in imagewise relation, to the latent image bearing surface. The resultant toner image can then be fixed, by application of heat or other known methods, depending upon the nature of the toner image and the surface, or can be transferred to another surface and then fixed. Toner particles often include charge control agents that desirably provide uniform net electrical charge to toner particles. Many types of positive charge control agents, materials which impart a positive charge to toner particles in a developer, have been used and are described in the published patent literature. In contrast, relatively few negative charge control agents, materials which impart a negative charge to toner particles in a developer, are known. Prior negative charge-control agents have a variety of shortcomings. Many charge-control agents are dark colored and cannot be readily used with pigmented toners, such as cyan, magenta, yellow, red, blue, and green. Some are highly toxic or produce highly toxic by-products. Some are highly sensitive to environmental conditions such as humidity. Some exhibit high throw-off or adverse triboelectric properties in some uses. Use of charge-control agents requires a balancing of shortcomings and desired characteristics to meet a particular situation. U.S. Pat. No. 5,332,637 describes the use of phthalimide and derivatives thereof as negative charge control agents for electrostatographic developers. U.S. Pat. No. 5,332,637 described electrostatographic dry toner and developer compositions with N-hydroxyphthalimide. The present invention is directed to the use of 2,4 dicyanoglutarimides as negative charge control agents. The synthesis of 2,4-dicyanoglutarimides is known, as disclosed in Guareschi, I., Chem. Zbl., 1901, 579 and Organic Syntheses, IV, 463, 662 (John Wiley & Sons 1963). The prior disclosure or use of 2,4-dicyanoglutarimides as charge control agents for electrostatographic toners and developers, however, is unknown. Currently there is a dearth of commercially available colorless, metal-free free negative charge control agents for electrophotographic toners and developers. In order to provide consistently good print to print image quality with electrophographic printers, it is imperative that toner charge remain fairly constant over the life of the developer. Hence the need for new charge control agents. It would be highly desirable to obtain negative charge control agents useful in electrostatographic toners and developers which agents have favorable charging and other relevant characteristics. SUMMARY OF THE INVENTION The invention provides an electrophotographic toner having a polymeric binder and a charge control agent selected from the group consisting of 2,4-dicyanoglutarimides of the following general structure: ##STR2## where R.sup.1 and R.sup.2 are the same or different and may be hydrogen; unsubstituted or substituted alkyl containing from 1-18 carbon atoms; unsubstituted or substituted aryl containing from 6 to 14 carbon atoms, unsubstituted or substituted heterocyclic ring Systems; or wherein R.sup.1 and R.sup.2 form an unsubstituted or substituted ring system, wherein the aforementioned substituted moieties have one or more substituents independently selected from the group consisting of halo, hydroxyl, alkyl, alkoxy, thioalkyl, amino, nitro, unsubstituted or substituted aryl (using the same substituents), unsaturated hydrocarbon groups, and combinations thereof. When reference in this application is made to a particular moiety or group that is substituted, this means with one or more substituents (up to the maximum possible number), for example, substituted benzene (with up to five substituents), substituted heteroaromatic, and substituted heterocyclic. Generally, unless otherwise specifically stated, substituent groups usable on molecules herein include any groups, whether substituted or unsubstituted, which do not destroy properties necessary for the electrostatic utility. Examples of substituents on any of the mentioned groups can include known substituents, such as: halogen, for example, chloro, fluoro, bromo, iodo; alkoxy, particularly those "lower alkyl" (that is, with 1 to 6 carbon atoms), for example, methoxy, ethoxy; substituted or unsubstituted alkyl, particularly lower alkyl (for example, methyl, trifluoromethyl); thioalkyl (for example, methylthio or ethylthio), particularly either of those with 1 to 6 carbon atoms; substituted and unsubstituted aryl, particularly those having from 6 to 20 carbon atoms (for example, phenyl); and substituted or unsubstituted heteroaryl, particularly those having a 5 or 6-membered ring containing 1 to 3 heteroatoms selected from N, O, or S (for example, pyridyl, thienyl, furyl, pyrrolyl). Alkyl substituents may specifically include "lower alkyl" (that is, having 1-6 carbon atoms), for example, methyl, ethyl, and the like. Further, with regard to any alkyl group or alkylene group, it will be understood that these can be branched, unbranched or cyclic. The charge-control agents are useful in electrostatographic toners and developers. An advantageous effect of the present invention is that negatively charging toners can be provided that have comparatively favorable charging characteristics. Other advantageous properties of these materials include their thermal stability in air which permits their use in toners which are melt compounded and their low color which permits their use in color toners without adversely affecting the toner hue. Further advantages include ease of synthesis from readily available starting materials and the absence of environmentally undesirable toxic metals. DETAILED DESCRIPTION OF THE INVENTION The term "particle size" as used herein, or the term "size," or "sized" as employed herein in reference to the term "particles," means the median volume weighted diameter as measured by conventional diameter measuring devices, such as a Coulter Multisizer, sold by Coulter, Inc. of Hialeah, Fla. Median volume weighted diameter is an equivalent weight spherical particle which represents the median for a sample. In other words, half of the mass of the sample is composed of smaller particles, and half of the mass of the sample is composed of larger particles than the median volume weighted diameter. The term "charge-control," as used herein, refers to a propensity of a toner addendum to modify the triboelectric charging properties of the resulting toner. The term "glass transition temperature" or "T.sub.g ", as used herein, means the temperature at which a polymer changes from a glassy state to a rubbery state. This temperature (T.sub.g) can be measured by differential thermal analysis as disclosed in "Techniques and Methods of Polymer Evaluation," Vol. 1, Marcel Dekker, Inc., New York, 1966. The invention in its broader aspects provides an electrophotographic toner having polymeric binder and negative charge control agents selected from the group consisting of 2,4-dicyanoglutarimides of the following general Sructure I: ##STR3## where R.sup.1 and R.sup.2 are the same or different and may be hydrogen; unsubstituted alkyl containing from 1-18 carbon atoms such as, methyl, ethyl, propyl, 2-ethylhexyl, t-butyl, isopropyl, octadecyl, cyclohexyl, cyclopropyl, 5-norbornene-2-yl, 1-adamantyl, and the like; substituted alkyl containing from 1-18 carbon atoms substituted with groups such as, chloromethyl, 1-hydroxyethyl, trifluoromethyl, methoxymethyl, 3-(diethylamino)propyl-, 4-methyl-3-pentenyl, and for alkyl subsituted with an aryl group, benzyl, diphenylmethyl, 2-phenylethyl, 2-phenylpropyl, and the like; unsubstituted aryl containing from 6 to 14 carbon atoms such as phenyl, 1-naphthyl, 2-naphthyl, anthracene-9-yl, phenanthrene-2-yl, and the like; substituted aryl containing from 6 to 14 carbon atoms such as, 4-methylphenyl, 2-fluorophenyl, 3-trifluoromethylphenyl, 3-chlorophenyl, 4-bromophenyl, 4-chlorophenyl, 2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2,4-dichlorophenyl, 4-ethoxyphenyl, 2,4,6-trimethylphenyl, 4-hydroxyphenyl, 4-aminophenyl, 2-nitrophenyl, 4-biphenyl, 4-(dimethylamino)phenyl, 6-methoxy-2-naphthyl, and the like; substituted or unsubstituted heterocyclic ring systems such as, 1-indolyl, benzofuran-2-yl, 2-furfuryl, 2-thienyl, 1H-pyrrole-2-yl, and the like; or R.sup.1 and R.sup.2 form a ring system such as 2-adamantylidene, cyclohexylidene, cyclopentylidene, 9-fluorenylidene, 2-indanylidene, 2-norbornylidene, and the like. Exemplary of particular 2,4-dicyanoglutarimides for use in the present invention are the following compounds: 2,4-dicyano-3-propyl-3-phenylglutarimide, 2,4-dicyano-3-(2-ethylhexyl)-3-phenylglutarimide, 2,4-dicyano-3-(t-butyl)-3-phenylglutarimide, 2,4-dicyano-3-(isopropyl)-3-phenylglutarimide, 2,4-dicyano-3-(octadecyl)-3-phenylglutarimide, 2,4-dicyano-3-(cyclohexyl)-3-phenylglutarimide, 2,4-dicyano-3-(cyclopropyl)-3-phenylglutarimide, 2,4-dicyano-3-(5-norbornene-2-yl)-3-phenylglutarimide, 2,4-dicyano-3-(1-adamantyl)-3-phenylglutarimide, 2,4-dicyano-3-(chloromethyl)-3-phenylglutarimide, 2,4-dicyano-3-(1-hydroxyethyl)-3-phenylglutarimide, 2,4-dicyano-3-(trifluromethyl)-3-phenylglutarimide, 2,4-dicyano-3-(methoxymethyl)-3-phenylglutarimide, 2,4-dicyano-3-(3-(N,N-diethylamino)propyl)-3-phenylglutarimide, 2,4-dicyano-3-(4-methyl-3-pentenyl)-3-phenylglutarimide, 2,4-dicyano-3-methyl-3-phenylglutarimide, 2,4-dicyano-3-methyl-3-(1-naphthyl)glutarimide, 2,4-dicyano-3-methyl-3-(2-naphthyl)glutarimide, 2,4-dicyano-3-methyl-3-(anthracene-9-yl)glutarimide, 2,4-dicyano-3-methyl-3-(phenanthrene-2-yl)glutarimide, 2,4-dicyano-3-methyl-3-(2-fluorophenyl)glutarimide, 2,4-dicyano-3-methyl-3-(3-trifluoromethylphenyl)glutarimide, 2,4-dicyano-3-methyl-3-(4-bromophenyl)glutarimide, 2,4-dicyano-3-methyl-3-(2,4,6-trimethylphenyl)glutarimide, 2,4-dicyano-3-methyl-3-(4-hydroxyphenyl)glutarimide, 2,4-dicyano-3-methyl-3-(4-aminophenyl)glutarimide, 2,4-dicyano-3-methyl-3-(2-nitrophenyl)glutarimide, 2,4-dicyano-3-methyl-3-(4-biphenylyl)glutarimide, 2,4-dicyano-3-methyl-3-(4-(dimethyladino)phenyl)glutarimide, 2,4-dicyano-3-methyl-3-(6-methoxy-2-naphthyl)glutarimide, 2,4-dicyano-3-methyl-3-(2-fluorophenyl)glutarimide, 2,4-dicyano-3-methyl-3-(4-methylphenyl)glutarimide, 2,4-dicyano-3-ethyl-3-phenylglutarimide, 2,4-dicyano-3-methyl-3-(4-methoxyphenyl)glutarimide, 2,4-dicyano-3-methyl-3-(3-methoxyphenyl)glutarimide, 2,4-dicyano-3-methyl-3-(2-methoxyphenyl)glutarimide, 2,4-dicyano-3-methyl-3-(4-chlorophenyl)glutarimide, 2,4-dicyano-3-methyl-3-(1-indolyl)glutarimide, 2,4-dicyano-3-methyl-3-(benzofuran-2-yl)glutarimide, 2,4-dicyano-3-methyl-3-(2-furfuryl)glutarimide, 2,4-dicyano-3-methyl-3-(2-thienyl)glutarimide, 2,4-dicyano-3-methyl-3-(1H-pyrrole-2-yl)glutarimide, and 2,4-dicyano-3-ethyl-3-(4-chlorophenyl)glutarimide, and further the compounds according to the above Structure I in which ##STR4## is selected from the following groups: ##STR5## 2,4-dicyano-3-phenylglutarimide, 2,4-dicyano-3-(1-naphthyl)glutarimide, 2,4-dicyano-3-(2-naphthyl)glutarimide, 2,4-dicyano-3-(anthracene-9-yl)glutarimide, 2,4-dicyano-3-(phenanthrene-2-yl)glutarimide, 2,4-dicyano-3-(2-fluorophenyl)glutarimide, 2,4-dicyano-3-(3-trifluoromethylphenyl)glutarimide, 2,4-dicyano-3-(4-bromophenyl)glutarimide, 2,4-dicyano-3-(2,4,6-trimethylphenyl)glutarimide, 2,4-dicyano-3-(4-hydroxyphenyl)glutarimide, 2,4-dicyano-3-(4-aminophenyl)glutarimide, 2,4-dicyano-3-(2-nitrophenyl)glutarimide, 2,4-dicyano-3-(4-biphenylyl)glutarimide, 2,4-dicyano-3-(4-(dimethylamino)phenyl)glutarimide, 2,4-dicyano-3-(6-methoxy-2-naphthyl)glutarimide, 2,4-dicyano-3-(2-fluorophenyl)glutarimide, 2,4-dicyano-3-(4-methylphenyl)glutarimide, and 2,4-dicyano-3,3-dimethylglutarimide, 2,4-dicyano-3,3-diphenylglutarimide, and 2,4-dicyanoglutarimide. A preferred class of compounds are those charge control agents having the following structure: ##STR6## wherein R.sup.1 and R.sup.2 are the same or different and comprises at least one alkyl group having 1 to 18 carbon atoms and at least one substituted or unsubstituted aryl group having 1 to 18 carbon atoms or where R.sup.1 and R.sup.2 form a ring system. A more preferred class of compounds are those charge control agents having the following structure: ##STR7## wherein R.sup.1 and R.sup.2 are the same or different and comprises at least one alkyl group having 1 to 8 carbon atoms and at least one substituted or unsubstituted phenyl or heterocyclic group wherein the substituents are selected from alkyl or halo groups, or where R.sup.1 and R.sup.2 form a multicyclic aliphatic ring system. Particularly preferred compounds include the following: 2,4-dicyano-3-propyl-3-phenylglutarimide, 2,4-dicyano-3-(2-ethylhexyl)-3-phenylglutarimide, 2,4-dicyano-3-(t-butyl)-3-phenylglutarimide, 2,4-dicyano-3-(isopropyl)-3-phenylglutarimide, 2,4-dicyano-3-(octadecyl)-3-phenylglutarimide, 2,4-dicyano-3-(chloromethyl)-3-phenylglutarimide, 2,4-dicyano-3-methyl-3-phenylglutarimide, 2,4-dicyano-3-methyl-3-(2-fluorophenyl)glutarimide, 2,4-dicyano-3-methyl-3-(4-bromophenyl)glutarimide, 2,4-dicyano-3-methyl-3-(2,4,6-trimethylphenyl)glutarimide, 2,4-dicyano-3-methyl-3-(2-fluorophenyl)glutarimide, 2,4-dicyano-3-methyl-3-(4-methylphenyl)glutarimide, 2,4-dicyano-3-ethyl-3-phenylglutarimide, 2,4-dicyano-3-methyl-3-(4-chlorophenyl)glutarimide, 2,4-dicyano-3-methyl-3-(2-furfuryl)glutarimide, 2,4-dicyano-3-ethyl-3-(4-chlorophenyl)glutarimide, and further the compounds according to the above Structure I in which ##STR8## is selected from the following groups: ##STR9## An advantage of the present charge control agents are their ease of synthesis from readily available starting materials and the absence of environmentally undesirable metals. The compounds disclosed herein were synthesized, by a procedure reported in Organic Syntheses (John Wiley & Sons), IV, 463, 662, from ethyl ylidenecyanoacetates and cyanoacetamide in ethanol with sodium ethoxide. Table 1 in the Examples below lists ethyl ylidenecyanoacetate intermediates prepared and Table 2 in the Examples below lists 2,4-dicyanoglutarimides prepared from these intermediates. The synthesis can be represented by the following reaction scheme: ##STR10## The present 2,4-dicyanoglutarimides can also be represented in enol tautomeric forms, where the extent of enolization is a function of temperature, solvent and concentration. For the sake of brevity, alternate tautomeric forms will not be illustrated herein. However, formulas should be understood to be inclusive of alternate tautomers as indicated below. ##STR11## As mentioned above, advantageous effects of negatively charging toners according to the present invention are their favorable charging characteristics, their thermal stabilities in air which permit their use in toners which are melt compounded, and their low color which permits their use in color toners without adversely affecting the toner hue. The triboelectric charge of electrophotographic developers changes with life. This instability in charging level is one of the factors that require active process control systems in electrophotographic printers to maintain consistent print to print image density. It is desirable to have low charge/mass (Q/m) developers that are stable with life. The low Q/m has the advantage of improved electrostatic transfer and higher density capabilities. However, low Q/m is often achieved at a severe penalty in the throw-off (dust) amounts which is undesirable as it results in a dusty developer. Low throw-off values (<20 mg of dust) combined with low Q/m (-10 to -40 .mu.C/g) is desirable because we attain lower charge without paying the penalty of higher dust. The toners of the invention include a charge-control agent of the invention, in an amount to effectively modify and improve the properties of the toner. It is preferred that a charge-control agent improve the charging characteristics of a toner, so the toner quickly charges to a negative value having a suitable absolute magnitude and then maintains about the same level of charge. The compositions used in the toners are negative charge-control agents, thus the toners of the invention achieve and maintain negative charges. It is also preferred that a charge-control agent improve the charge uniformity of a toner composition, that is, it insures that substantially all of the individual toner particles exhibit a triboelectric charge of the same sign with respect to a given carrier. The charge-control agents of the invention are generally lightly colored. It is also preferred that a charge-control agent be metal free and have good thermal stability. The charge-control agents of the invention are metal free and have good thermal stability. Preferred materials described herein are based upon an evaluation in terms of a combination of characteristics rather than any single characteristic. The binders used in formulating the toners of the invention with the charge-controlling additive of the present invention are preferably polyesters having a glass transition temperature of 40 to 120.degree. C., preferably 50.degree. to 100.degree. C. and a weight average molecular weight of 2,000 to 150,000, preferably 10,000 to 100,000. The polyesters are prepared from the reaction product of a wide variety of diols and dicarboxylic acids. Some specific examples of suitable diols are: 1,4-cyclohexanediol; 1,4-cyclohexanedimethanol; 1,4-cyclohexanediethanol; 1,4-bis(2-hydroxyethoxy)cyclohexane; 1,4-benzenedimethanol; 1,4-benzenediethanol; norbornylene glycol; decahydro-2,6-naphthalenedimethanol; bisphenol A; ethylene glycol; diethylene glycol; triethylene glycol; 1,2-propanediol, 1,3-propanediol; 1,4-butanediol; 2,3-butanediol; 1,5-pentanediol; neopentyl glycol; 1,6-hexanediol; 1,7-heptanediol; 1,8-octanediol; 1,9-nonanediol; 1,10-decanediol; 1,12-dodecanediol; 2,2,4-trimethyl-1,6-hexanediol; 4-oxa-2,6-heptanediol and etherified diphenols. Suitable dicarboxylic acids include: succinic acid; sebacic acid; 2-methyladipic acid; diglycolic acid; thiodiglycolic acid; fumaric acid; adipic acid; glutaric acid; cyclohexane-1,3-dicarboxylic acid; cyclohexane-1,4-dicarboxylic acid; cyclopentane-1,3-dicarboxylic acid; 2,5-norbornanedicarboxylic acid; phthalic acid; isophthalic acid; terephthalic acid; 5-butylisophthalic acid; 2,6-naphthalenedicarboxylic acid; 1,4-naphthalenedicarboxylic acid; 1,5-naphthalenedicarboxylic acid; 4,4'-sulfonyldibenzoic acid; 4,4'-oxydibenzoic acid; binaphthyldicarboxylic acid; and lower alkyl esters of the acids mentioned. Polyfunctional compounds having three or more carboxyl groups, and three or more hydroxyl groups are desirably employed to create branching in the polyester chain. Triols, tetraols, tricarboxylic acids, and functional equivalents, such as pentaerythritol, 1,3,5-trihydroxypentane, 1,5-dihydroxy-3-ethyl-3-(2-hydroxyethyl)pentane, trimethylolpropane, trimellitic anhydride, pyromellitic dianhydride, and the like are suitable branching agents. Presently preferred polyols are glycerol and trimethylolpropane. Preferably, up to about 15 mole percent, preferably 5 mole percent, of the reactant diol/polyol or diacid/polyacid monomers for producing the polyesters can be comprised of at least one polyol having a functionality greater than two or poly-acid having a functionality greater than two. Variations in the relative amounts of each of the respective monomer reactants are possible for optimizing the physical properties of the polymer. The polyesters mentioned above are conveniently prepared by any of the known polycondensation techniques, e.g., solution polycondensation or catalyzed melt-phase polycondensation, for example, by the transesterification of dimethyl terephthalate, dimethyl glutarate, 1,2-propanediol and glycerol. The polyesters also can be prepared by two-stage polyesterification procedures, such as those described in U.S. Pat. Nos. 4,140,644 and 4,217,400. The latter patent is particularly relevant, because it is directed to the control of branching in polyesterification. In such processes, the reactant glycols and dicarboxylic acids, are heated with a polyfunctional compound, such as a triol or tricarboxylic acid, and an esterification catalyst in an inert atmosphere at temperatures of 190 to 280.degree. C., especially 200 to 240.degree. C. Subsequently, a vacuum is applied, while the reaction mixture temperature is maintained at 220 to 240.degree. C., to increase the product's molecular weight. The degree of polyesterification can be monitored by measuring the inherent viscosity (I.V.) of samples periodically taken from the reaction mixture. The reaction conditions used to prepare the polyesters should be selected to achieve an I.V. of 0.10 to 0.80 measured in methylene chloride solution at a concentration of 0.25 grams of polymer per 100 milliliters of solution at 25.degree. C. An I.V. of 0.10 to 0.60 is particularly desirable to insure that the polyester has a weight average molecular weight of 10,000 to 100,000, preferably 55,000 to 65,000, a branched structure and a Tg in the range of about 500 to about 100.degree. C. Amorphous polyesters are particularly well suited for use in the present invention. After reaching the desired inherent viscosity, the polyester is isolated and cooled. One useful class of polyesters comprises residues derived from the polyesterification of a polymerizable monomer composition comprising: a dicarboxylic acid-derived component comprising: about 75 to 100 mole % of dimethyl terephthalate and about 0 to 25 mole % of dimethyl glutarate and a diol/poly-derived component comprising about 90 to 100 mole % of 1,2-propanediol and about 0 to 10 mole % of glycerol. Many of the above-described polyesters are disclosed in the patent to Alexandrovich et al, U.S. Pat. No. 5,156,937. Another useful class of polyesters is the non-linear reaction product of a dicarboxylic acid and a polyol blend of etherified diphenols disclosed in U.S. Pat. Nos. 3,681,106; 3,709,684; and 3,787,526. A preferred group of etherified bisphenols within the class characterized by the above formula in U.S. Pat. No. 3,787,526 are polyoxypropylene 2,2'-bis(4-hydroxyphenyl) propane and polyoxyethylene or polyoxypropylene, 2,2-bis(4-hydroxy, 2,6-dichlorophenyl) propane wherein the number of oxyalkylene units per mol of bisphenol is from 2.1 to 2.5. The etherified diphenols disclosed in U.S. Pat. No. 3,709,684 are those prepared from 2,2-bis(4-hydroxyphenyl) propane or the corresponding 2,6,2',6'-tetrachloro or tetrafluoro bisphenol alkoxylated with from 2 to 4 mols of propylene or ethylene oxide per mol of bisphenol. The etherified diphenols disclosed in U.S. Pat. No. 3,681,106 have the formula: ##STR12## wherein z is 0 or 1, R is an alkylidene radical containing from 1 to 5 carbon atoms, a sulfur atom, an oxygen atom, ##STR13## X and Y are individually selected from the group consisting of alkyl radicals containing from 1 to 3 carbon atoms, hydrogen, and a phenyl radical with the limitation that at least X or Y is hydrogen in any X and Y pair on adjacent carbon atoms, n and m are integers with the proviso that the average sum of n and m is from about 2 to about 7; and each A is either a halogen atom or a hydrogen atom. An average sum of n and m means that in any polyol blend some of the etherified diphenols within the above formula may have more than 7 repeating ether units but that the average value for the sum of n and m in any polyhydroxy composition is from 2 to 7. A preferred group of said etherified diphenols are those where the average sum of n and m is from about 2 to about 3. Thus, although the sum of n and m in a given molecule may be as high as about 20, the average sum in the polyol composition will be about 2 to about 3. Examples of these preferred etherified diphenols include: polyoxyethylene(2.7)-4-hydroxyphenyl-2-chloro-4-hydroxyphenyl ethane; polyoxyethylene(2.5)-bis(2,6-dibromo-4-hydroxyphenyl) sulfone; polyoxypropylene(3)-2,2-bis(2,6-difluoro-4-hydroxyphenyl) propane; and polyoxyethylene(1.5)-polyoxypropylene(1.0)-bis(4-hydroxyphenyl) sulfone. A preferred polyhydroxy composition used in said polyester resins are those polyhydroxy compositions containing up to 2 mol percent of an etherified polyhydroxy compound, which polyhydroxy compound contains from 3 to 12 carbon atoms and from 3 to 8 hydroxyl groups. Exemplary of these polyhydroxy compounds are sugar alcohols, sugar alcohol anhydrides, and mono and disaccharides. A preferred group of said polyhydroxy compounds are soribitol, 1,2,3,6-hexantetrol; 1,4-sorbitan; pentaerythritol, xylitol, sucrose, 1,2,4-butanetriol, 1,2,5-pentanetriol; xylitol; sucrose, 1,2,4-butanetriol; and erythro and threo 1,2,3-butanetriol. Said etherified polyhydroxy compounds are propylene oxide or ethylene oxide derivatives of said polyhydroxy compounds containing up to about 10 molecules of oxide per hydroxyl group of said polyhydroxy compound and preferably at least one molecule of oxide per hydroxyl group. More preferably the molecules of oxide per hydroxyl group is from 1 to 1.5. Oxide mixtures can readily be used. Examples of these derivatives include polyoxyethylene(20) pentaerytliritol, polyoxypropylene(6) sorbitol, polyoxyethylene(65) sucrose, and polyoxypropylene(25) 1,4-sorbitan. The polyester resins prepared from this preferred polyhydroxy composition are more abrasion resistant and usually have a lower liquid point than other crosslinked polyesters herein disclosed. An optional but preferred component of the toners of the invention is colorant, a pigment or dye. Suitable dyes and pigments are disclosed, for example, in U.S. Pat. No. Re. 31,072 and in U.S. Pat. Nos. 4,160,644; 4,416,965; 4,414,152; and 2,229,513. One particularly useful colorant for toners to be used in black and white electrostatographic copying machines and printers is carbon black. Colorants are generally employed in the range of from about 1 to about 30 weight percent on a total toner powder weight basis, and preferably in the range of about 2 to about 15 weight percent. The toners of the invention can also contain other additives of the type used in previous toners, including leveling agents, surfactants, stabilizers, and the like. The total quantity of such additives can vary. A present preference is to employ not more than about 10 weight percent of such additives on a total toner powder composition weight basis. The toners can optionally incorporate a small quantity of low surface energy material, as described in U.S. Pat. Nos. 4,517,272 and 4,758,491. Optionally the toner can contain a particulate additive on its surface such as the particulate additive disclosed in U.S. Pat. No. 5,192,637. A preformed mechanical blend of particulate polymer particles, charge-control agent, colorants and additives can, alternatively, be roll milled or extruded at a temperature sufficient to melt blend the polymer or mixture of polymers to achieve a uniformly blended composition. The resulting material, after cooling, can be ground and classified, if desired, to achieve a desired toner powder size and size distribution. For a polymer having a "T.sub.g " in the range of about 50.degree. C. to about 120.degree. C., a melt blending temperature in the range of about 90.degree. C. to about 150.degree. C. is suitable using a roll mill or extruder. Melt blending times, that is, the exposure period for melt blending at elevated temperature, are in the range of about 1 to about 60 minutes. After melt blending and cooling, the composition can be stored before being ground. Grinding can be carried out by any convenient procedure. For example, the solid composition can be crushed and then ground using, for example, a fluid energy or jet mill, such as described in U.S. Pat. No. 4,089,472. Classification can be accomplished using one or two steps. In place of blending, the polymer can be dissolved in a solvent in which the charge-control agent and other additives are also dissolved or are dispersed. The resulting solution can be spray dried to produce particulate toner powders. Limited coalescence polymer suspension procedures as disclosed in U.S. Pat. No. 4,833,060 are particularly useful for producing small sized, uniform toner particles. The toner particles have an average diameter between about 0.1 micrometers and about 100 micrometers, and desirably have an average diameter in the range of from about 1.0 micrometer to 30 micrometers for currently used electrostatographic processes. The size of the toner particles is believed to be relatively unimportant from the standpoint of the present invention; rather the exact size and size distribution is influenced by the end use application intended. So far as is now known, the toner particles can be used in all known electrostatographic copying processes. The amount of charge-control agent used typically is in the range of about 0.2 to 10.0 parts per hundred parts of the binder polymer. In particularly useful embodiments, the charge-control agent is present in the range of about 1.0 to 4.0 parts per hundred. The developers of the invention include carriers and toners of the invention. Carriers can be conductive, non-conductive, magnetic, or non-magnetic. Carriers are particulate and can be glass beads; crystals of inorganic salts such as ammonium chloride, or sodium nitrate; granules of zirconia, silicon, or silica; particles of hard resin such as poly(methyl methacrylate); and particles of elemental metal or alloy or oxide such as iron, steel, nickel, carborundum, cobalt, oxidized iron and mixtures of such materials. Examples of carriers are disclosed in U.S. Pat. Nos. 3,850,663 and 3,970,571. Especially useful in magnetic brush development procedures are iron particles such as porous iron, particles having oxidized surfaces, steel particles, and other "hard" and "soft" ferromagnetic materials such as gamma ferric oxides or ferrites of barium, strontium, lead, magnesium, copper, zinc or aluminum. Copper-zinc ferrite powder is used as a carrier in the examples hereafter. Such carriers are disclosed in U.S. Pat. Nos. 4,042,518; 4,478,925; and 4,546,060. Carrier particles can be uncoated or can be coated with a thin layer of a film-forming resin to establish the correct triboelectric relationship and charge level with the toner employed. Examples of suitable resins are the polymers described in U.S. Pat. Nos. 3,547,822; 3,632,512; 3,795,618 and 3,898,170 and Belgian Patent No. 797,132. Polymeric siloxane coatings can aid the developer to meet the electrostatic force requirements mentioned above by shifting the carrier particles to a position in the triboelectric series different from that of the uncoated carrier core material to adjust the degree of triboelectric charging of both the carrier and toner particles. The polymeric siloxane coatings can also reduce the frictional characteristics of the carrier particles in order to improve developer flow properties; reduce the surface hardness of the carrier particles to reduce carrier particle breakage and abrasion on the photoconductor and other components; reduce the tendency of toner particles or other materials to undesirably permanently adhere to carrier particles; and alter electrical resistance of the carrier particles. In a particular embodiment, the developer of the invention contains from about 1 to about 20 percent by weight of toner of the invention and from about 80 to about 99 percent by weight of carrier particles. Usually, carrier particles are larger than toner particles. Conventional carrier particles have a particle size of from about 5 to about 1200 micrometers and are generally from 20 to 200 micrometers. Carriers can also be in liquid form. Useful liquifiable carriers are disclosed in U.S. Pat. Nos. 3,520,681; 3, 975,195; 4,013,462; 3,707,368; 3,692,516 and 3,756,812. The carrier can comprise an electrically insulating liquid such as decane, paraffin, Sohio Odorless Solvent 3440 (a kerosene fraction marketed by the Standard Oil Company, Ohio), various isoparaffinic hydrocarbon liquids, such as those sold under the trademark Isopar G by Exxon Corporation and having a boiling point in the range of 145.degree. C. to 186.degree. C., various halogenated hydrocarbons such as carbon tetrachloride, trichloromonofluoromethane, and the like, various alkylated aromatic hydrocarbon liquids such as the alkylated benzenes, for example, xylenes, and other alkylated aromatic hydrocarbons such as are described in U.S. Pat. No. 2,899,335. An example of one such useful alkylated aromatic hydrocarbon liquid which is commercially available is Solvesso.RTM. 100 sold by Exxon Corporation. The toners of the invention are not limited to developers which have carrier and toner, and can be used, without carrier, as single component developer. The toner and developer of the invention can be used in a variety of ways to develop electrostatic charge patterns or latent images. Such developable charge patterns can be prepared by a number of methods and are then carried by a suitable element. The charge pattern can be carried, for example, on a light sensitive photoconductive element or a non-light-sensitive dielectric surface element, such as an insulator coated conductive sheet. One suitable development technique involves cascading developer across the electrostatic charge pattern. Another technique involves applying toner particles from a magnetic brush. This technique involves the use of magnetically attractable carrier cores. After imagewise deposition of the toner particles the image can be fixed, for example, by heating the toner to cause it to fuse to the substrate carrying the toner. If desired, the unfused image can be transferred to a receiver such as a blank sheet of copy paper and then fused to form a permanent image. |
PATENT EXAMPLES | This data is not available for free |
PATENT PHOTOCOPY | Available on request |
Want more information ? Interested in the hidden information ? Click here and do your request. |