Main > PROTEINS > Proteomics > Human Proteomics > Ubiquitin > Conjugating Like Enzyme

Product USA. I

PATENT NUMBER This data is not available for free
PATENT GRANT DATE April 2, 2002
PATENT TITLE Ubiquitin-like conjugating protein

PATENT ABSTRACT The invention provides a human ubiquitin-like conjugating protein (UBCLE) and polynucleotides which identify and encode UBCLE. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for treating or preventing disorders associated with expression of UBCLE
PATENT INVENTORS This data is not available for free
PATENT ASSIGNEE This data is not available for free
PATENT FILE DATE June 9, 1999
PATENT REFERENCES CITED GenBank Accession No. AA005074 (Jul. 1996).*
GenBank Accession No. AA046871 (Mar. 1996).*
Watson et al. Recombinant DNA. 2nd Edition (Feb. 1994) W.H. Freeman and Co. Press. pp. xiii-xiv and 99, 119-124.*
Harlow et al. Antibodies: A Laboratory Manual (1988) Cold Spring Harbor Press. p. 76.*
Verma, R. et al., "Phosphorylation of Sic1p by G.sub.1 Cdk Required for Its Degradation and Entry into S Phase" Science (1997) 278:455-460.
Ciechanover, Aaron, "The Ubiquitin-Proteasome Proteolytic Pathway" Cell (1994) 79:13-21.
Jentsch, Stefan, "The Ubiquitin-Conjugating System," Annu.Rev.Genet. (1992) 26:179-207.
Jensen, J.P. et al. "Identification of a Family of Closely Related Human Ubiquitin Conjugating Enzymes" (1995) 270:30408-30414.
Monia, B.P. et al., "Gene Synthesis, Expression, and Processing of Human Ubiquitin Carboxyl Extension Proteins." J. Biol. Chem. (1989) 264:4093-4103.
van Nocker, S. et al., "The Arabidopsis Thaliana UBC7/13/14 Genes Encode a Family of Multiubiquitin Chain-forming E2 Enzymes." J.Biol.Chem. (1996) 271:12150-12158.
Llovera, M. et al., "Muscle Wasting Associated with Cancer Cachexia is Linked to an Important Activation of the ATP-Dependent Ubiquitin-Mediated Proteolysis" Int.J.Cancer (1995) 61:138-141.
Gregori, L. et al., "Ubiquitin-Mediated Degradative Pathway Degrades the Extracellular but not the Intracellular Form of Amyloid .beta.-Protein Precursor" Biochem.Biophys.Res.Commun. (1994) 203:1731-1738.
Grant, E.P. et al., "Rate of Antigen Degradation by the Ubiquitin-Proteasome Pathway Influences MHC Class I Presentation" J.Immunol. 155:3750-3758 (1995).
Jensen, J.P. et al., GI 145691, GenBank Sequence Database (Accession U39318), National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, 20894. Nov. 13, 1995.
Jensen, J.P. et al., GI 145690, GenBank Sequence Database (Accession U39318), National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, 20894. Mar. 7, 1996.

PATENT PARENT CASE TEXT This data is not available for free
PATENT CLAIMS What is claimed is:

1. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of:

a) an amino acid sequence of SEQ ID NO:1;

b) a naturally-occurring amino acid sequence having at least 90% sequence identity to the sequence of SEQ ID NO:1 and which possesses ubiquitin conjugating activity.

2. An isolated polypeptide of claim 1, having the amino acid sequence of SEQ ID NO:1.

3. An isolated polypeptide of claim 1, comprising a naturally-occurring amino acid sequence having at least 90% sequence identity to the sequence of SEQ ID NO:1 and which possesses ubiquitin conjugating activity.

4. An isolated polypeptide of claim 1, comprising an amino acid sequence of SEQ ID NO:1.

5. A composition comprising a polypeptide of claim 1 and a suitable pharmaceutical carrier.

6. A method for screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising:

a) exposing a sample comprising a polypeptide of claim 1 to a compound; and

b) detecting agonist activity in the sample.

7. A method for screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:

a) exposing a sample comprising a polypeptide of claim 1 to a compound; and

b) detecting antagonist activity in the sample.

8. A method of screening for a compound that specifically binds to the polypeptide of claim 1, said method comprising the steps of:

a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions; and

b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.

9. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, said method comprising:

a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1;

b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound; and

c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.
--------------------------------------------------------------------------------

PATENT DESCRIPTION FIELD OF THE INVENTION

This invention relates to nucleic acid and amino acid sequences of a ubiquitin-like conjugating protein and to the use of these sequences in the diagnosis, treatment, and, prevention of cancer, and developmental, immune and neuronal disorders.

BACKGROUND OF THE INVENTION

The ubiquitin conjugation system (UCS) plays a major role in the degradation of cellular proteins in eukaroytic cells and in some bacterial cells. UCS mediates the elimination of abnormal proteins and regulates the half-lives of other important regulatory proteins that control gene transcription and cell cycle progression. The UCS is reported to degrade mitotic cyclic kinases, oncoproteins, tumor suppressors, viral proteins, transcriptional regulators, and receptors associated with signal transduction (Verma, R. et al. (1997) Science 278:455-460; Ciechanover, A. (1994) Cell 79:13-21).

Several steps are involved in ubiquitin (Ub) conjugation and protein degradation (Jentsch, S. (1992) Annu. Rev. Genet. 26:179-207). First, Ub, a small, heat stable protein, is activated by a ubiquitin-activating enzyme (E1). This ATP dependent activation involves binding of the C-terminus of Ub to the thiol group of a cysteine residue of E1. Activated Ub is subsequently transferred to one of several Ub-conjugating enzymes (E2). Each E2 has a recognition subunit which allows it to interact with proteins carrying a particular degradation signal. E2 links the Ub molecule through its C-terminal glycine to an internal lysine of the target protein. Different ubiquitin-dependent proteolytic pathways employ structurally similar, but distinct, E2s, and in some instances, accessory factors known as ubiquitin-ligases or E3s, are required to work in conjunction with E2s for recognition of certain substrates (Jensen, J. P. et al. (1995) J. Biol. Chem. 270:30408-30414). More than one Ub molecule may be needed to ubiquinate a target protein which is subsequently recognized and degraded by a proteasome. After degradation, Ub is released and reutilized.

Prior to activation, Ub is usually expressed as a fusion protein composed of an N-terminal ubiquitin and a C-terminal extension protein (CEP) or as a polyubiquitin protein with Ub monomers attached head to tail. CEPs have characteristics of a variety of regulatory proteins; most are highly basic, contain up to 30% lysine and arginine residues, and have nucleic acid-binding domains (Monia, B. P. et al. (1989) J. Biol. Chem. 264:4093-4103). The fusion protein is an important intermediate which appears to mediate co-regulation of the cell's translational and protein degradation activities, as well as localization of the inactive enzyme to specific cellular sites. Once delivered, C-terminal hydrolases cleave the fusion protein to release a functional Ub (Monia et al., supra).

The E2s are important for substrate specificity in several UCS pathways. All E2s have a conserved ubiquitin conjugation (UBC) domain of approximately 16 kD, at least 35% identity with each other, and contain a centrally located cysteine residue which is necessary for ubiquitin-enzyme thiolester formation (Jentsch, supra). A highly conserved proline-rich element is located N-terminal to the active cysteine residue. Structural variations outside of this conserved domain are used to separate the E2 enzymes into classes. The E2s of class 1 (E2-1) consist of the conserved UBC domain and include yeast E2-1 and UBCs 4, 5, and 7. These E2s are thought to require E3 to carry out their activities (Jentsch, supra). UBC7 has been shown to recognize ubiquitin as a substrate and to form polyubiquitin chains in vitro (van Nocker, S. et al. (1996) J. Biol. Chem. 271:12150-58). E2s of class 2 (E2-2) have various unrelated C-terminal extensions that contribute to substrate specificity and cellular localization. The yeast E2-2 enzymes, UBC2 and UBC3, have highly acidic C-terminal extensions that promote interactions with basic substrates such as histones. Yeast UBC6 has a hydrophobic signal-anchor sequence that localizes the protein to the endoplasmic reticulum.

Abnormal activities of the UCS are implicated in a number of diseases and disorders. These include, e.g., cachexia (Llovera, M. et al. (1995) Int. J. Cancer 61: 138-141), degradation of the tumor-suppressor protein, p53 (Ciechanover, supra), and neurodegeneration such as observed in Alzheimer's disease (Gregori, L. et al. (1994) Biochem. Biophys. Res. Commun. 203: 1731-1738). Since ubiquitin conjugation is a rate-limiting step in antigen presentation, the ubiquitin degradation pathway may also have a critical role in the immune response (Grant E. P. et al. (1995) J. Immunol. 155: 3750-3758).

The discovery of new ubiquitin-conjugating-like protein and the polynucleotides encoding it satisfies a need in the art by providing new compositions which are useful in the diagnosis, treatment, and prevention of cancer, and developmental, immune and neuronal disorders.

SUMMARY OF THE INVENTION

The invention features a substantially purified polypeptide, ubiquitin-like conjugating protein (UBCLE), comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1.

The invention further provides a substantially purified variant of UBCLE having at least 90% amino acid identity to the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1. The invention also provides an isolated and purified polynucleotide sequence encoding the polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1. The invention also includes an isolated and purified polynucleotide variant having at least 90% polynucleotide identity to the polynucleotide sequence encoding the polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1.

Additionally, the invention provides a composition comprising a polynucleotide sequence encoding the polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1. The invention further provides an isolated and purified polynucleotide sequence which hybridizes under stringent conditions to the polynucleotide sequence encoding the polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1, as well as an isolated and purified polynucleotide sequence which is complementary to the polynucleotide sequence encoding the polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1.

The invention also provides an isolated and purified polynucleotide sequence comprising SEQ ID NO:2 or a fragment of SEQ ID NO:2, and an isolated and purified polynucleotide variant having at least 90% polynucleotide identity to the polynucleotide sequence comprising SEQ ID NO:2 or a fragment of SEQ ID NO:2. The invention also provides an isolated and purified polynucleotide sequence which is complementary to the polynucleotide sequence comprising SEQ ID NO:2 or a fragment of SEQ ID NO:2.

The invention further provides an expression vector containing at least a fragment of the polynucleotide sequence encoding the polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1. In another aspect, the expression vector is contained within a host cell.

The invention also provides a method for producing a polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing at least a fragment of a polynucleotide sequence encoding UBCLE under conditions suitable for the expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.

The invention also provides a pharmaceutical composition comprising a substantially purified UBCLE having the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1 in conjunction with a suitable pharmaceutical carrier.

The invention further includes a purified antibody which binds to a polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1, as well as a purified agonist and a purified antagonist of the polypeptide.

The invention also provides a method for treating or preventing a cancer, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of UBCLE.

The invention also provides a method for treating or preventing an developmental disorder, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of UBCLE.

The invention also provides a method for treating or preventing an immune disorder, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of UBCLE.

The invention also provides a method for treating or preventing a neuronal disorder, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of UBCLE.

The invention also provides a method for detecting a polynucleotide encoding UBCLE in a biological sample containing nucleic acids, the method comprising the steps of:

(a) hybridizing the complement of the polynucleotide sequence encoding the polypeptide comprising SEQ ID NO:1 or a fragment of SEQ ID NO:1 to at least one of the nucleic acids of the biological sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide encoding UBCLE in the biological sample. In one aspect, the nucleic acids of the biological sample are amplified by the polymerase chain reaction prior to the hybridizing step. THERAPEUTICS

Chemical and structural homology exists between UBCLE and human UBCH5C (GI 1145690). In addition, UBCLE is expressed in cancer, and developmental, immune, and neuronal disorders where UBCLE plays a role in the cell cycle and in cell signaling. Therefore, UBCLE appears to play a role in cancer, and developmental, immune, and neuronal disorders.

Degradation of tumor suppressor proteins such as p53 by E2 enzymes may contribute to the development of cancer. Therefore, in one embodiment, an antagonist of UBCLE may be administered to a subject to treat or prevent a cancer. Such cancers can include, but are not limited to, adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding UBCLE may be administered to a subject to treat or prevent a cancer including, but not limited to, those described above.

Abnormalities in processing of neural proteins (AP) by enzymes of the UCS may contribute to neuronal disorders. Therefore, in another embodiment, an antagonist which modulates the activity of UBCLE may be administered to a subject to treat or prevent a neuronal disorder. Such neuronal disorders can include, but are not limited to, akathesia, Alzheimer's disease, amnesia, amyotrophic lateral sclerosis, bipolar disorder, catatonia, cerebral neoplasms, dementia, depression, Down's syndrome, tardive dyskinesia, dystonias, epilepsy, Huntington's disease, multiple sclerosis, Parkinson's disease, paranoid psychoses, schizophrenia, and Tourette's disorder.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding UBCLE may be administered to a subject to treat or prevent a neuronal disorder including, but not limited to, those disorders described above.

In a further embodiment, an antagonist of UBCLE may be administered to a subject to treat or prevent a developmental disorder. Such developmental disorders may include, but are not limited to, renal tubular acidosis, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, gonadal dysgenesis, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spinal bifida, and congenital glaucoma, cataract, or sensorineural hearing loss.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding UBCLE may be administered to a subject to treat or prevent a developmental disorder including, but not limited to, those disorders described above.

In a further embodiment, an antagonist of UBCLE may be administered to a subject to treat or prevent an immune disorder. Such immune disorders may include, but are not limited to, Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, cholecystitis, contact dermayitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, lupus erythematosus, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, ulcerative colitis, Werner syndrome, and complications of cancer, hemodialysis, and extracorporeal circulation; viral, bacterial, fungal, parasitic, protozoal, and helminthic infections; and trauma.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding UBCLE may be administered to a subject to treat or prevent an immune disorder including, but not limited to, those disorders described above.

In one aspect, an antibody which specifically binds UBCLE may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which express UBCLE.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of UBCLE may be produced using methods which are generally known in the art. In particular, purified UBCLE may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind UBCLE. Antibodies to UBCLE may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are especially preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with UBCLE or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium paryum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to UBCLE have an amino acid sequence consisting of at least about 5 amino acids, and, more preferably, of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of UBCLE amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies to UBCLE may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R. J. et al. (1983) Proc. Natl. Acad. Sci. 80:2026-2030; and Cole, S. P. et al. (1984) Mol. Cell Biol. 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (Morrison, S. L. et al. (1984) Proc. Natl. Acad. Sci. 81:6851-6855; Neuberger, M. S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce UBCLE-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (Burton D. R. (1991) Proc. Natl. Acad. Sci. 88:11120-11123.)

Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. 86: 3833-3837, and Winter, G. et al. (1991) Nature 349:293-299.)

Antibody fragments which contain specific binding sites for UBCLE may also be generated. For example, such fragments include, but are not limited to, F(ab')2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (Huse, W. D. et al. (1989) Science 254:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between UBCLE and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering UBCLE epitopes is preferred, but a competitive binding assay may also be employed. (Maddox, supra.)

In another embodiment of the invention, the polynucleotides encoding UBCLE, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding UBCLE may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding UBCLE. Thus, complementary molecules or fragments may be used to modulate UBCLE activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding UBCLE.

Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors which will express nucleic acid sequence complementary to the polynucleotides of the gene encoding UBCLE. These techniques are described, for example, in Sambrook (supra) and in Ausubel (supra).

Genes encoding UBCLE can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide or fragment thereof encoding UBCLE. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.

As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding UBCLE. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (Gee, J. E. et al. (1994) in Huber, B. E. and B. I. Carr, Molecular and Immunologic Approaches, Futura Publishing Co., Mt. Kisco, N.Y.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding UBCLE.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides corresponding to the region of the target gene containing the cleavage site may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding UBCLE. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA constitutively or inducibly can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thyrnine, and uridine which are not as easily recognized by endogenous endonucleases:

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art, such as those described in Goldman, C. K. et al. (1997; Nature Biotechnology 15:462-466).

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

An additional embodiment of the invention relates to the administration of a pharmaceutical composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of UBCLE, antibodies to UBCLE, and mimetics, agonists, antagonists, or inhibitors of UBCLE. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs or hormones.

The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing Co., Easton, Pa.).

Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0. 1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of UBCLE, such labeling would include amount, frequency, and method of administration.

Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays of neoplastic cells, for example, or in animal models, usually mice, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example UBCLE or fragments thereof, antibodies of UBCLE, and agonists, antagonists or inhibitors of UBCLE, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED50 (the dose therapeutically effective in 50% of the population) or LD50 (the dose lethal to 50% of the population) statistics. The dose ratio between therapeutic and toxic effects is the therapeutic index, and it can be expressed as the LD50/ED50 ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or once every two weeks depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from 0.1 .mu.g to 100,000 .mu.g, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind UBCLE may be used for the diagnosis of disorders characterized by expression of UBCLE, or in assays to monitor patients being treated with UBCLE or agonists, antagonists, and inhibitors of UBCLE. Antibodies useful for diagnostic purposes may be prepared in the same manner as those described above for therapeutics. Diagnostic assays for UBCLE include methods which utilize the antibody and a label to detect UBCLE in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent joining with a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring UBCLE, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of UBCLE expression. Normal or standard values for UBCLE expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to UBCLE under conditions suitable for complex formation The amount of standard complex formation may be quantified by various methods, preferably by photometric means. Quantities of UBCLE expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding UBCLE may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of UBCLE may be correlated with disease. The diagnostic assay may be used to distinguish between absence, presence, and excess expression of UBCLE, and to monitor regulation of UBCLE levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding UBCLE or closely related molecules may be used to identify nucleic acid sequences which encode UBCLE. The specificity of the probe, whether it is made from a highly specific region (e.g., the 5' regulatory region) or from a less specific region (e.g., the 3' coding region), and the stringency of the hybridization or amplification (maximal, high, intermediate, or low), will determine whether the probe identifies only naturally occurring sequences encoding UBCLE, alleles, or related sequences.

Probes may also be used for the detection of related sequences, and should preferably contain at least 50% of the nucleotides from any of the UBCLE encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:2 or from genomic sequences including promoter and enhancer elements and introns of the naturally occurring UBCLE.

Means for producing specific hybridization probes for DNAs encoding UBCLE include the cloning of polynucleotide sequences encoding UBCLE or UBCLE derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as .sup.32 P or .sup.35 S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding UBCLE may be used for the diagnosis of a disorder associated with expression of UBCLE. Disorders include, but are not limited to, cancers such as adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; neuronal disorders such as akathesia, Alzheimer's disease, amnesia, amyotrophic lateral sclerosis, bipolar disorder, catatonia, cerebral neoplasms, dementia, depression, Down's syndrome, tardive dyskinesia, dystonias, epilepsy, Huntington's disease, multiple sclerosis, Parkinson's disease, paranoid psychoses, schizophrenia, and Tourette's disorder; develpomental disorders such as renal tubular acidosis, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, gonadal dysgenesis, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spinal bifida, and congenital glaucoma, cataract, or sensorineural hearing loss; and immune disorders such as Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, cholecystitis, contact dermayitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, lupus erythematosus, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, ulcerative colitis, Werner syndrome, and complications of cancer, hemodialysis, and extracorporeal circulation; viral, bacterial, fungal, parasitic, protozoal, and helminthic infections; and trauma. The polynucleotide sequences encoding UBCLE may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and ELISA assays; and in microarrays utilizing fluids or tissues from patient biopsies to detect altered UBCLE expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding UBCLE may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding UBCLE may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantitated and compared with a standard value. If the amount of signal in the patient sample is significantly altered from that of a comparable control sample, the nucleotide sequences have hybridized with nucleotide sequences in the sample, and the presence of altered levels of nucleotide sequences encoding UBCLE in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or in monitoring the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of UBCLE, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding UBCLE, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained from normal samples may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to evaluate whether the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of a relatively high amount of transcript in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding UBCLE may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding UBCLE, or a fragment of a polynucleotide complementary to the polynculeotide encoding UBCLE, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantitation of closely related DNA or RNA sequences.

Methods which may also be used to quantitate the expression of UBCLE include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (Melby, P. C. et al. (1993) J. Immunol. Methods 159:235-244, and Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously (to produce a transcript image) and to identify genetic variants, mutations, and polymorphisms. This information may be used in determining gene function, in understanding the genetic basis of a disorder, in diagnosing a disorder, and in developing and monitoring the activities of therapeutic agents.

In one embodiment, the microarray is prepared and used according to methods known in the art, such as those described in published PCT application W095/11995 (Chee et al.), Lockhart, D. J. et al. (1996; Nat. Biotech. 14:1675-1680), and Schena, M. et al. (1996; Proc. Natl. Acad. Sci. 93:10614-10619).

The microarray is preferably composed of a large number of unique single-stranded nucleic acid sequences, usually either synthetic antisense oligonucleotides or fragments of cDNAs, fixed to a solid support. The oligonucleotides are preferably about 6 to 60 nucleotides in length, more preferably about 15 to 30 nucleotides in length, and most preferably about 20 to 25 nucleotides in length. For a certain type of microarray, it may be preferable to use oligonucleotides which are about 7 to 10 nucleotides in length. The microarray may contain oligonucleotides which cover the known 5' or 3' sequence, or may contain sequential oligonucleotides which cover the full length sequence or unique oligonucleotides selected from particular areas along the length of the sequence. Polynucleotides used in the microarray may be oligonucleotides specific to a gene or genes of interest in which at least a fragment of the sequence is known or oligonucleotides specific to one or more unidentified cDNAs common to a particular cell or tissue type or to a normal, developmental, or disease state. In certain situations, it may be appropriate to use pairs of oligonucleotides on a microarray. The pairs will be identical, except for one nucleotide preferably located in the center of the sequence. The second oligonucleotide in the pair (mismatched by one) serves as a control. The number of oligonucleotide pairs may range from about 2 to 1,000,000.

In order to produce oligonucleotides to a known sequence for a microarray, the gene of interest is examined using a computer algorithm which starts at the 5' end, or, more preferably, at the 3' end of the nucleotide sequence. The algorithm identifies oligomers of defined length that are unique to the gene, have a GC content within a range suitable for hybridization, and lack predicted secondary structure that may interfere with hybridization. In one aspect, the oligomers are synthesized at designated areas on a substrate using a light-directed chemical process. The substrate may be paper, nylon, any other type of membrane, filter, chip, glass slide, or any other suitable solid support.

In one aspect, the oligonucleotides may be synthesized on the surface of the substrate by using a chemical coupling procedure and an ink jet application apparatus, such as that described in published PCT application W095/25 1116 (Baldeschweiler et al.). In another aspect, a grid array analogous to a dot or slot blot (HYBRIDOT apparatus, GIBCO/BRL) may be used to arrange and link cDNA fragments or oligonucleotides to the surface of a substrate using a vacuum system or thermal, UV, mechanical or chemical bonding procedures. In yet another aspect, an array may be produced by hand or by using available devices, materials, and machines (including Brinkmann.RTM. multichannel pipettors or robotic instruments), and may contain 8, 24, 96, 384, 1536, or 6144 oligonucleotides, or any other multiple from 2 to 1,000,000 which lends itself to the efficient use of commercially available instrumentation.

In order to conduct sample analysis using the microarrays, polynucleotides are extracted from a biological sample. The biological samples may be obtained from any bodily fluid (blood, urine, saliva, phlegm, gastric juices, etc.), cultured cells, biopsies, or other tissue preparations. To produce probes, the polynucleotides extracted from the sample are used to produce nucleic acid sequences which are complementary to the nucleic acids on the microarray. If the microarray consists of cDNAs, antisense RNAs (aRNA) are appropriate probes. Therefore, in one aspect, mRNA is used to produce cDNA which, in turn and in the presence of fluorescent nucleotides, is used to produce fragment or oligonucleotide aRNA probes. These fluorescently labeled probes are incubated with the microarray so that the probe sequences hybridize to the cDNA oligonucleotides of the microarray. In another aspect, nucleic acid sequences used as probes can include polynucleotides, fragments, and complementary or antisense sequences produced using restriction enzymes, PCR technologies, and OLIGOLABELING or TRANSPROBE kits (Pharmacia & Upjohn) well known in the area of hybridization technology.

Incubation conditions are adjusted so that hybridization occurs with precise complementary matches or with various degrees of less complementarity. After removal of nonhybridized probes, a scanner is used to determine the levels and patterns of fluorescence. The scanned images are examined to determine the degree of complementarity and the relative abundance of each oligonucleotide sequence on the microarray. A detection system may be used to measure the absence, presence, and amount of hybridization for all of the distinct sequences simultaneously. This data may be used for large scale correlation studies or for functional analysis of the sequences, mutations, variants, or polymorphisms among samples. (Heller, R. A. et al. (1997) Proc. Natl. Acad. Sci. 94:2150-2155.)

In another embodiment of the invention, nucleic acid sequences encoding UBCLE may be used to generate hybridization probes useful for mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, such as human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries, such as those reviewed in Price, C. M. (1993; Blood Rev. 7:127-134) and Trask, B. J. (1991; Trends Genet. 7:149-154).

Fluorescent in situ hybridization (FISH, as described in Verma et al. (1988) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York, N.Y.) may be correlated with other physical chromosome mapping techniques and genetic map data. Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) site. Correlation between the location of the gene encoding UBCLE on a physical chromosomal map and a specific disorder, or predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the subject invention may be used to detect differences in gene sequences between normal, carrier, and affected individuals.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms, or parts thereof, by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, for example, AT to 11q22-23 (Gatti, R. A. et al. (1988) Nature 336:577-580), any sequences mapping to that area may represent associated or regulatory genes for further investigation. The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, UBCLE, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between UBCLE and the agent being tested may be measured.

Another technique for drug screening which may be used provides for high throughput screening of compounds having suitable binding affinity to the protein of interest as described in published PCT application WO84/03564. In this method, large numbers of different small test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The test compounds are reacted with UBCLE, or fragments thereof, and washed. Bound UBCLE is then detected by methods well known in the art. Purified UBCLE can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding UBCLE specifically compete with a test compound for binding UBCLE. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with UBCLE.

In additional embodiments, the nucleotide sequences which encode UBCLE may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.



PATENT EXAMPLES This data is not available for free
PATENT PHOTOCOPY Available on request

Want more information ?
Interested in the hidden information ?
Click here and do your request.


back