Main > PROTEINS > Proteomics > Human Proteomics > Kinase > Serine/Threonine Kinase

Product USA. I

PATENT NUMBER This data is not available for free
PATENT GRANT DATE This data is not available for free
PATENT TITLE Serine/threonine protein kinases

PATENT ABSTRACT The invention provides human serine/threonine protein kinases (HSTK) and polynucleotides which identify and encode HSTK. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating or preventing disorders associated with expression of HSTK.

PATENT INVENTORS This data is not available for free
PATENT ASSIGNEE This data is not available for free
PATENT FILE DATE September 16, 1998
PATENT REFERENCES CITED Harmann, B. and Kilimann, MW. cDNA encoding a 59 kDa homolog of ribosomal protein S6 kinase from rabbit iver. 1990 FEBSLetters. vol. 273 No. 1,2, pp. 248-252.
Waskiewicz A.J., et al., (Direct Submission), GenBank Sequence Database (Accession Y11092), National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, 20894 (GI 192906).
Kilimann, M.W., et al., (Direct Submission), GenBank Sequence Database (Accession X54415), National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, 20894 (GI 1562).

PATENT PARENT CASE TEXT This data is not available for free
PATENT CLAIMS What is claimed is:

1. A substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1 and SEQ ID NO:2.

2. A pharmaceutical composition comprising the polypeptide of claim 1 in conjunction with a suitable pharmaceutical carrier.

3. A method for using a polypeptide to screen a library of molecules or compounds to identify at least one molecule or compound which specifically binds the polypeptide, the method comprising:

a) combining the polypeptide of claim 1 with the library of molecules or compounds under conditions to allow specific binding; and

b) detecting specific binding, thereby identifying a molecule or compound which specifically binds the polypeptide.

4. The method of claim 3 wherein the library of molecules or compounds is selected from the group consisting of DNA molecules, peptides, agonists, antagonists, antibodies, immunoglobulins and pharmaceutical agents.

5. A method of using a polypeptide to purify a molecule or compound which specifically binds the polypeptide from a sample, the method comprising:

a) combining the polypeptide of claim 1 with a sample under conditions to allow specific binding;

b) recovering the bound polypeptide; and

c) separating the polypeptide from the molecule or compound, thereby obtaining purified molecule or compound from the sample.
--------------------------------------------------------------------------------

PATENT DESCRIPTION FIELD OF THE INVENTION

This invention relates to nucleic acid and amino acid sequences of serine/threonine protein kinases and to the use of these sequences in the diagnosis, treatment, and prevention of cancer, inflammatory diseases, and disorders that affect growth and development.

BACKGROUND OF THE INVENTION

Kinases regulate many different cell proliferation, differentiation, and signaling processes by adding phosphate groups to proteins. Uncontrolled signaling has been implicated in a variety of disease conditions including inflammation, cancer, arteriosclerosis, and psoriasis. Reversible protein phosphorylation is the main strategy for controlling activities of eukaryotic cells. It is estimated that more than 1000 of the 10,000 proteins active in a typical mammalian cell are phosphorylated. The high energy phosphate which drives activation is generally transferred from adenosine triphosphate molecules (ATP) to a particular protein by protein kinases and removed from that protein by protein phosphatases.

Phosphorylation occurs in response to extracellular signals (hormones, neurotransmitters, growth and differentiation factors, etc), cell cycle checkpoints, and environmental or nutritional stresses and is roughly analogous to turning on a molecular switch. When the switch goes on, the appropriate protein kinase activates a metabolic enzyme, regulatory protein, receptor, cytoskeletal protein, ion channel or pump, or transcription factor.

The kinases comprise the largest known protein group, a superfamily of enzymes with widely varied functions and specificities. They are usually named after their substrate, their regulatory molecules, or some aspect of a mutant phenotype. With regard to substrates, the protein kinases may be roughly divided into two groups; those that phosphorylate tyrosine residues (protein tyrosine kinases, PTK) and those that phosphorylate serine or threonine residues (serine/threonine kinases, STK). A few protein kinases have dual specificity and phosphorylate threonine and tyrosine residues. Almost all kinases contain a similar 250-300 amino acid catalytic domain. The N-terminal domain, which contains subdomains I-IV, generally folds into a two-lobed structure which binds and orients the ATP (or GTP) donor molecule. The larger C terminal lobe, which contains subdomains VI A-XI, binds the protein substrate and carries out the transfer of the gamma phosphate from ATP to the hydroxyl group of a serine, threonine, or tyrosine residue. Subdomain V spans the two lobes.

The kinases may be categorized into families by the different amino acid sequences (generally between 5 and 100 residues) located on either side of, or inserted into loops of, the kinase domain. These added amino acid sequences allow the regulation of each kinase as it recognizes and interacts with its target protein. The primary structure of the kinase domains is conserved and can be further subdivided into 11 subdomains. Each of the 11 subdomains contain specific residues and motifs or patterns of amino acids that are characteristic of that subdomain and are highly conserved. (Hardie, G. and Hanks, S. (1995) The Protein Kinase Facts Books I, Academic Press, San Diego, Calif., pp. 7-20).

The second messenger dependent protein kinases primarily mediate the effects of second messengers such as cyclic AMP (cAMP) cyclic GMP, inositol triphosphate, phosphatidylinositol, 3,4,5-triphosphate, cyclic ADP ribose, arachidonic acid and diacylglycerol. The cyclic-AMP dependent protein kinases (PKA) are important members of the STK family. Cyclic-AMP is an intracellular mediator of hormone action in all procaryotic and animal cells that have been studied. Such hormone-induced cellular responses include thyroid hormone secretion, cortisol secretion, progesterone secretion, glycogen breakdown, bone resorption, and regulation of heart rate and force of heart muscle contraction. PKA is found in all animal cells and is thought to account for the effects of cyclic-AMP in most of these cells. Altered PKA expression is implicated in a variety of disorders and diseases including cancer, thyroid disorders, diabetes, atherosclerosis, and cardiovascular disease. (Isselbacher, K. J. et al. (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, New York, N.Y., pp. 416-431).

The mitogen-activated protein kinases (MAP) are also members of the STK family. MAP kinases also regulate intracellular signaling pathways. They mediate signal transduction from the cell surface to the nucleus via phosphorylation cascades. Several subgroups have been identified, and each manifests different substrate specificities and responds to distinct extracellular stimuli (Egan, S. E. and Weinberg, R. A. (1993) Nature 365:781-783). MAP kinase signaling pathways are present in mammalian cells as well as in yeast. The extracellular stimuli which activate mammalian pathways include epidermal growth factor (EGF), ultraviolet light, hyperosmolar medium, heat shock, endotoxic lipopolysaccharide (LPS), and pro-inflammatory cytokines such as tumor necrosis factor (TNF) and interleukin-1 (IL-1). An important member of the MAP kinases is the cytoplasmic p70 ribosomal S6 kinase which is essential for the initiation of protein synthesis in all cell types following mitogenic stimulation (Hershey, J. W. B. (1989) J. Biol. Chem. 264: 20823-26). Altered MAP kinase expression can therefore be implicated in a variety of disease conditions including cancer, inflammation, immune disorders, and disorders affecting growth and development.

The discovery of new serine/threonine protein kinases and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, treatment, and prevention of cancer, inflammatory diseases, and disorders that affect growth and development.

SUMMARY OF THE INVENTION

The invention features substantially purified polypeptides, serine/threonine protein kinases, referred to collectively as "HSTK" and individually as "HSTK-2" and "HSTK-3." In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, and fragments thereof.

The invention further provides a substantially purified variant having at least 90% amino acid identity to the amino acid sequences of SEQ ID NO:1, SEQ ID NO:2, and fragments thereof. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, and fragments thereof. The invention also includes an isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, and fragments thereof.

Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, and fragments thereof, as well as an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, and fragments thereof.

The invention also provides an isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:4, and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at least 70% polynucleotide sequence identity to the polynucleotide sequence comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:4, and fragments thereof, as well as an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:4, and fragments thereof.

The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, and fragments thereof. In another aspect, the expression vector is contained within a host cell.

The invention also provides a method for producing a polypeptide, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing at least a fragment of a polynucleotide under conditions suitable for the expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.

The invention also provides a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, and fragments thereof in conjunction with a suitable pharmaceutical carrier.

The invention further includes a purified antibody which binds to a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, and fragments thereof, as well as a purified agonist and a purified antagonist to the polypeptide.

The invention also provides a method for treating or preventing a cancer, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of the polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, and fragments thereof.

The invention also provides a method for treating or preventing an inflammatory disorder, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of the polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, and fragments thereof.

The invention also provides a method for treating or preventing a disorder affecting growth and development, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of the polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, and fragments thereof.

The invention also provides a method for detecting a polynucleotide in a sample containing nucleic acids, the method comprising the steps of (a) hybridizing the complement of the polynucleotide sequence to at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one aspect, the method further comprises amplifying the polynucleotide prior to hybridization.

BRIEF DESCRIPTION OF THE FIGURES AND TABLE

FIGS. 1A, 1B, 1C, 1D, and 1E show the amino acid sequence (SEQ ID NO:1) and nucleic acid sequence (SEQ ID NO:3) of HSTK-2.

FIGS. 2A, 2B, 2C, 2D, and 2E show the amino acid sequence (SEQ ID NO:2) and nucleic acid sequence (SEQ ID NO:4) of HSTK-3. The alignments were produced using MACDNASIS PRO software (Hitachi Software Engineering Co. Ltd., Yokohama, Japan).

FIGS. 3A and 3B show the amino acid sequence alignments between HSTK-2 (Incyte clone number 1309709; SEQ ID NO:1) and MAP kinase interacting kinase (GI 1929061; SEQ ID NO:5).

FIGS. 4A and 4B show the amino acid sequence alignments between HSTK-3 (Incyte clone number 2180242; SEQ ID NO:2) and G3 serine/threonine kinase (GI 1562; SEQ ID NO:6). The alignments were produced using the multisequence alignment program of LASERGENE software (DNASTAR Inc, Madison Wis.).

Table 1 summarizes the programs, algorithms, databases, and qualifying scores used to analyze HSTK.

Want more information ?
Interested in the hidden information ?
Click here and do your request.


back