PATENT ASSIGNEE'S COUNTRY | USA |
UPDATE | 10.99 |
PATENT NUMBER | This data is not available for free |
PATENT GRANT DATE | 05.10.99 |
PATENT TITLE |
Human heat shock 27 like protein |
PATENT ABSTRACT |
The invention provides a new human heat shock 27 like protein, (HSP27P) and polynucleotides which identify and encode HSP27P. The invention also provides expression vectors, host cells, agonists, antibodies and antagonists. The invention also provides methods for treating disorders associated with expression of HSP27P. |
PATENT INVENTORS | This data is not available for free |
PATENT ASSIGNEE | This data is not available for free |
PATENT FILE DATE | 25.07.97 |
PATENT REFERENCES CITED |
Gaestel et al. Molefular cloning, sequencing and expression in Escherichia coliof the 25-kDa growth related protein of Ehrlich ascites tumor and its homology to mammalian stress proteins. Eur. J. Biochem. 179: 209-213, 1989. Hillier et al. est #WOO821. databases Genbank-est106, EMBL-est54 , accessed May 27, 1998, Apr. 18, 1996. Hightower, L.E., "Heat Shock, Stress Proteins, Chaperones, and Proteotoxicity", Cell, 66: 191-197 (1991). Hickey, E. et al., "Sequence and organization of genes encoding the human 27 kDa heat shock protein", Nucleic Acids Res., 14: 4127-4145 (1986). Miron, T. et al., "A 25-kD Inhibitor of Actin Polymerization Is a Low Molecular Mass Heat Shock Protein", J. Cell Biol., 114: 255-261 (1991). Marber, M.S. et al., "Overexpression of the Rat Inducible 70-kD Heat Stress Protein in a Transgenic Mouse Increases the Resistance of the Heart to Ischemic Injury", J. Clin. Invest., 95: 1446-1456 (1995). Simon, M.M. et al., "Heat Shock Protein 70 Overexpression Affects the Response to Ultraviolet Light in Muring Fibroblasts --Evidence for Increased Cell Viability and Suppression of Cytokine Release", J. Clin. Invest., 95: 926-933 (1995). Udono, H. et al., "Comparison of Tumor-Specific Immunogenicities of Stress-Induced Proteins gp96, hsp90, and hsp70", J. Immunol., 152: 5398-5403 (1994). Fang, Y. et al., "Hsp90 Regulates Androgen Receptor Hormone Binding Affinity in Vivo", J. Biol. Chem., 271: 28697-28702 (1996). Young, R.A., "Stress Proteins and Immunology", Annu. Rev. Immunol., 8: 401-420 (1990). Sargent, C.A. et al., "Human major histocompatibility complex contains genes for the major heat shock protein HSP70", Proc. Natl. Acad. Sci. USA, 86:1968-1972 (1989). Hendrick, J.P. et al., "Control of folding and membrane translocation by binding of the chaperone DnaJ to nascent polypeptides",Proc. Natl. Acad. Sci. USA, 90:10216-10220 (1993). Dix, D.J. et al., "Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility", Proc. Natl. Acad. Sci. USA93: 3264-3268 (1996). Geiger, B. et al., (Direct Submission), GenBank Sequence Database (Accession 63522), National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, 20894 (GI 63522), Sep. 11,1991. Geiger, B. et al., (Direct Submission), GenBank Sequence Database (Accession X59541), National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, 20894 (GI 63521), Sep. 11, 1991. Hickey, E. et al., (Direct Submission, GenBank Sequence Database (Accession 662841), National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, 20894 (GI 662841), Feb. 10, 1995. Hickey, E. et al., (Direct Submission), GenBank Sequence Database (Accession L39370; X03900), National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, 20894 (GI 662840), Feb. 10, 1995. |
PATENT CLAIMS |
What is claimed is: 1. An isolated and purified polynucleotide sequence encoding the human heat shock 27 like protein of SEQ ID NO:1. 2. A composition comprising the polynucleotide sequence of claim 1. 3. A polynucleotide sequence which is completely complementary to the polynyucleotide sequence of claim 1. 4. An isolated and purified polynucleotide sequence comprising SEQ ID NO:2. 5. A polynucleotide sequence which is completely complementary to the polynucleotide sequence of claim 4. 6. An expression vector containing the polynucleotide sequence of claim 1. 7. A host cell containing the vector of claim 6. 8. A method for producing a polypeptide comprising the amino acid sequence of SEQ ID NO:1, the method comprising the steps of: a) culturing the host cell of claim 7 under conditions suitable for the expression of the polypeptide; and b) recovering the polypeptide from the host cell culture. |
PATENT DESCRIPTION |
FIELD OF THE INVENTION This invention relates to nucleic acid and amino acid sequences of a new human heat shock 27 like protein and to the use of these sequences in the diagnosis, prevention, and treatment of cancer and immune disorders. BACKGROUND OF THE INVENTION Induction of heat shock proteins (Hsps), a class of molecular chaperones, is a physiological and biochemical response to abrupt increases in temperature or exposure to a variety of other metabolic insults, including heavy metals, amino acid analogs, toxins, and oxidative stress. This response occurs in all prokaryotic and eukaryotic cells and is characterized by repression of normal protein synthesis and initiation of transcription of Hsp-encoding genes. Under normal or nonstressed conditions, constitutively expressed Hsps facilitate proper protein folding and maturation, promote protein translocation across membranes, and regulate hormone receptor and protein kinase activity (Hightower, L. E. et al. (1991) Cell, 66: 191-197). Hsps function by associating with cellular proteins and regulating their conformation. The conformational properties of a protein are determinants of protein activity, aggregation, degradation, and function. Hsp70s act by maintaining proteins in an unfolded conformation, while the Hsp60/GroEL complexes act by facilitating protein folding. Hsp90s act in a maturational or regulatory capacity on specific molecules including steroid hormone receptors; the small Hsps (20 kDa to 30 kDa) are able to suppress aggregation and heat inactivation of various proteins, including actin (Hickey, E. et al. (1986) Nucleic Acids Res. 14: 4127-4145; and Miron, T. et al. (1991) J. Cell Biol. 114: 255-261). Overexpression of Hsps in transgenic mice and rats or prior heat exposure of normal animals to induce Hsps protects the heart muscle from ischemic injury. Both heat shock-induced and exogenous Hsps protect smooth muscle cells from serum deprivation-induced cell death. Overexpression of Hsps also protects murine fibroblasts from both UV light injury and proinflammatory cytokines released during UV exposure (Marber, M. S. et al. (1995) J. Clin. Invest. 95: 1446-1456; Simon, M. M. et al. (1995) J. Clin. Invest. 95: 926-933). Hsps are located in all major cellular compartments and function as monomers, multimers, or complexed with other cellular proteins. Hsps bind to steroid hormone receptors, repress transcription in the absence of the ligand, and provide the proper folding of the ligand-binding domain in the presence of the hormone. Specific Hsps bind immunosuppressive drugs and may play a role in modulation of immune responses. Hsps expressed in cancer cells can protect the cancer cells from the cytotoxic effects of drugs used in anticancer therapies. Hsps isolated from tumor cells, when purified and used as an antigen, have been shown to provide immunity to the tumors from which they are isolated (Udono, H. et al. (1994) J. Immunol. 152: 5398-5403; Fang, Y. et al. (1996) J. Biol. Chem. 271: 28697-28702; and Young R. A. (1990) Annu. Rev. Immunol. 8: 401-420). Several of the constitutive Hsp genes are located in the major histocompatibility complex on chromosome 6, and members of the Hsp family play roles in T-cell mediated regulation of inflammation and immune recognition. Heat shock treatment of B-cells enhances processing of antigen and the assembly and function of MHC class II molecules (Sargent, C. A. et al. (1989) Proc. Natl. Acad. Sci. 86: 1968-1972; Hendrick, J. P. et al. (1993) Proc. Natl. Acad. Sci. 90: 10216-10220). Knockout mice are providing additional information on the roles of Hsps. For example, female homozygous knockout mice for Hsp70 are found to undergo normal meiosis and are fertile. In contrast, the male homozygous knockout mice lack postmeiotic spermatids and mature sperm and are infertile (Dix, D. J. et al. (1996) Proc. Nat. Acad. Sci. 93: 3264-3268). The discovery of a new heat shock-like protein and the polynucleotides encoding it satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention and treatment of cancer and immune disorders. SUMMARY OF THE INVENTION The invention features a substantially purified polypeptide, new human heat shock 27 like protein, (HSP27P), having the amino acid sequence shown in SEQ ID NO:1, or fragments thereof. The invention further provides an isolated and substantially purified polynucleotide sequence encoding the polypeptide comprising the amino acid sequence of SEQ ID NO:1 or fragments thereof and a composition comprising said polynuclebtide sequence. The invention also provides a polynucleotide sequence which hybridizes under stringent conditions to the polynucleotide sequence encoding the amino acid sequence SEQ ID NO:1, or fragments of said polynucleotide sequence. The invention further provides a polynucleotide sequence comprising the complement of the polynucleotide sequence encoding the amino acid sequence of SEQ ID NO:1, or fragments or variants of said polynucleotide sequence. The invention also provides an isolated and purified sequence comprising SEQ ID NO.2 or variants thereof. In addition, the invention provides a polynucleotide sequence which hybridizes under stringent conditions to the polynucleotide sequence of SEQ ID NO:2. The invention also provides a polynucleotide sequence comprising the complement of SEQ ID NO:2, or fragments or variants thereof. The present invention further provides an expression vector containing at least a fragment of any of the claimed polynucleotide sequences. In yet another aspect, the expression vector containing the polynucleotide sequence is contained within a host cell. The invention also provides a method for producing a polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment thereof, the method comprising the steps of: a) culturing the host cell containing an expression vector containing at least a fragment of the polynucleotide sequence encoding HSP27P under conditions suitable for the expression of the polypeptide; and b) recovering the polypeptide from the host cell culture. The invention also provides a pharmaceutical composition comprising a substantially purified HSP27P having the amino acid sequence of SEQ ID NO:1 in conjunction with a suitable pharmaceutical carrier. The invention also provides a purified antagonist of the polypeptide of SEQ ID NO:1. In one aspect the invention provides a purified antibody which binds to a polypeptide comprising the amino acid sequence of SEQ ID NO:1. Still further, the invention provides a purified agonist of the polypeptide of SEQ ID NO:1. The invention also provides a method for treating or preventing cancer comprising administering to a subject in need of such treatment an effective amount of an antagonist which decreases the activity of HSP27P. The invention also provides a method for treating or preventing an immune disorder comprising administering to a subject in need of such treatment an effective amount of an antagonist which decreases the activity of HSP27P. The invention also provides a method for treating or preventing tissue damage comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising purified HSP27P. The invention also provides a method for detecting a polynucleotide which encodes HSP27P in a biological sample comprising the steps of: a) hybridizing the complement of the polynucleotide sequence which encodes SEQ ID NO:1 to nucleic acid material of a biological sample, thereby forming a hybridization complex; and b) detecting the hybridization complex, wherein the presence of the complex correlates with the presence of a polynucleotide encoding HSP27P in the biological sample. In one aspect the nucleic acid material of the biological sample is amplified by the polymerase chain reaction prior to hybridization. BRIEF DESCRIPTION OF THE FIGURES FIGS. 1A-1D show the amino acid sequence (SEQ ID NO:1) and nucleic acid sequence (SEQ ID NO:2) of HSP27P. The alignment was produced using MacDNASIS PRO.TM. software (Hitachi Software Engineering Co. Ltd. San Bruno, Calif.). FIG. 2 shows the amino acid sequence alignments among HSP27P (SEQ ID NO:1), chicken heat shock protein (GI 63522; SEQ ID NO:3) and human heat shock protein 27 (GI 662841; SEQ ID NO:4), produced using the multisequence alignment program of LASERGENE software (DNASTAR Inc, Madison Wis.). DESCRIPTION OF THE INVENTION Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular methodology, protocols, cell lines, vectors, and reagents described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims. It must be noted that as used herein and in the appended claims, the singular forms "a", "an", and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to "a host cell" includes a plurality of such host cells, reference to the "antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods, devices, and materials are now described. All publications mentioned herein are incorporated herein by reference for the purpose of describing and disclosing the cell lines, vectors, and methodologies which are reported in the publications which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention. Definitions HSP27P, as used herein, refers to the amino acid sequences of substantially purified HSP27P obtained from any species, particularly mammalian, including bovine, ovine, porcine, murine, equine, and preferably human, from any source whether natural, synthetic, semi-synthetic, or recombinant. The term "agonist", as used herein, refers to a molecule which, when bound to HSP27P, increases or prolongs the duration of the effect of HSP27P. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to and modulate the effect of HSP27P. An "allele" or "allelic sequence", as used herein, is an alternative form of the gene encoding HSP27P. Alleles may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes which give rise to alleles are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence. "Altered" nucleic acid sequences encoding HSP27P as used herein include those with deletions, insertions, or substitutions of different nucleotides resulting in a polynucleotide that encodes the same or a functionally equivalent HSP27P. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding HSP27P, and improper or unexpected hybridization to alleles, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding HSP27P. The encoded protein may also be "altered" and contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent HSP27P. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the biological or immunological activity of HSP27P is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid; positively charged amino acids may include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, and valine, glycine and alanine, asparagine and glutamine, serine and threonine, and phenylalanine and tyrosine. "Amino acid sequence" as used herein refers to an oligopeptide, peptide, polypeptide, or protein sequence, and fragment thereof, and to naturally occurring or synthetic molecules. Fragments of HSP27P are preferably about 5 to about 15 amino acids in length and retain the biological activity or the immunological activity of HSP27P. Where "amino acid sequence" is recited herein to refer to an amino acid sequence of a naturally occurring protein molecule, amino acid sequence, and like terms, are not meant to limit the amino acid sequence to the complete, native amino acid sequence associated with the recited protein molecule. "Amplification" as used herein refers to the production of additional copies of a nucleic acid sequence and is generally carried out using polymerase chain reaction (PCR) technologies well known in the art (Dieffenbach, C. W. and G. S. Dveksler (1995) PCR Primer, a Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y.). The term "antagonist" as used herein, refers to a molecule which, when bound to HSP27P, decreases the amount or the duration of the effect of the biological or immunological activity of HSP27P. Antagonists may include proteins, nucleic acids, carbohydrates, antibodies or any other molecules which decrease the effect of HSP27P. As used herein, the term "antibody" refers to intact molecules as well as fragments thereof, such as Fa, F(ab').sub.2, and Fv, which are capable of binding the epitopic determinant. Antibodies that bind HSP27P polypeptides can be prepared using intact polypeptides or fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal can be derived from the translation of RNA or synthesized chemically and can be conjugated to a carrier protein, if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin and thyroglobulin, keyhole limpet hemocyanin. The coupled peptide is then used to immunize the animal (e.g., a mouse, a rat, or a rabbit). The term "antigenic determinant", as used herein, refers to that fragment of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to a given region or three-dimensional structure on the protein; these regions or structures are referred to as antigenic determinants. An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody. The term "antisense", as used herein, refers to any composition containing nucleotide sequences which are complementary to a specific DNA or RNA sequence. The term "antisense strand" is used in reference to a nucleic acid strand that is complementary to the "sense" strand. Antisense molecules include peptide nucleic acids and may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form duplexes and block either transcription or translation. The designation "negative" is sometimes used in reference to the antisense strand, and "positive" is sometimes used in reference to the sense strand. The term "biologically active", as used herein, refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability of the natural, recombinant, or synthetic HSP27P, or any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies. The terms "complementary" or "complementarity", as used herein, refer to the natural binding of polynucleotides under permissive salt and temperature conditions by base-pairing. For example, the sequence "A-G-T" binds to the complementary sequence "T-C-A". Complementarity between two single-stranded molecules may be "partial", in which only some of the nucleic acids bind, or it may be complete when total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acids strands and in the design and use of PNA molecules. A "composition comprising a given polynucleotide sequence" as used herein refers broadly to any composition containing the given polynucleotide sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding HSP27P (SEQ ID NO:1) or fragments thereof (e.g., SEQ ID NO:2 and fragments thereof) may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., SDS) and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.). "Consensus", as used herein, refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, has been extended using XL-PCR.TM. (Perkin Elmer, Norwalk, Conn.) in the 5' and/or the 3' direction and resequenced, or has been assembled from the overlapping sequences of more than one Incyte Clone using a computer program for fragment assembly (e.g., GELVIEW.TM. Fragment Assembly system, GCG, Madison, Wis.). Some sequences have been both extended and assembled to produce the consensus sequence. The term "correlates with expression of a polynucleotide", as used herein, indicates that the detection of the presence of ribonucleic acid that is similar to SEQ ID NO:2 by northern analysis is indicative of the presence of mRNA encoding HSP27P in a sample and thereby correlates with expression of the transcript from the polynucleotide encoding the protein. A "deletion", as used herein, refers to a change in the amino acid or nucleotide sequence and results in the absence of one or more amino acid residues or nucleotides. The term "derivative", as used herein, refers to the chemical modification of a nucleic acid encoding or complementary to HSP27P or the encoded HSP27P. Such modifications include, for example, replacement of hydrogen by an alkyl, acyl, or amino group. A nucleic acid derivative encodes a polypeptide which retains the biological or immunological function of the natural molecule. A derivative polypeptide is one which is modified by glycosylation, pegylation, or any similar process which retains the biological or immunological function of the polypeptide from which it was derived. The term "homology", as used herein, refers to a degree of complementarity. There may be partial homology or complete homology (i.e., identity). A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to using the functional term "substantially homologous". The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization and the like) under conditions of low stringency. A substantially homologous sequence or hybridization probe will compete for and inhibit the binding of a completely homologous sequence to the target sequence under conditions of low stringency. This is not to say that conditions of low stringency are such that non-specific binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific (i.e., selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% identity). In the absence of non-specific binding, the probe will not hybridize to the second non-complementary target sequence. Human artificial chromosomes (HACs) are linear microchromosomes which may contain DNA sequences of 10K to 10M in size and contain all of the elements required for stable mitotic chromosome segregation and maintenance (Harrington, J. J. et al. (1997) Nat Genet. 15:345-355). The term "humanized antibody", as used herein, refers to antibody molecules in which amino acids have been replaced in the non-antigen binding regions in order to more closely resemble a human antibody, while still retaining the original binding ability. The term "hybridization", as used herein, refers to any process by which a strand of nucleic acid bonds with a complementary strand through base pairing. The term "hybridization complex", as used herein, refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary G and C bases and between complementary A and T bases; these hydrogen bonds may be further stabilized by base stacking interactions. The two complementary nucleic acid sequences hydrogen bond in an antiparallel configuration. A hybridization complex may be formed in solution (e.g., C.sub.0 t or R.sub.0 t analysis) or between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed). An "insertion" or "addition", as used herein, refers to a change in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, as compared to the naturally occurring molecule. "Microarray" refers to an array of distinct polynucleotides or oligonucleotides synthesized on a substrate, such as paper, nylon or other type of membrane, filter, chip, glass slide, or any other suitable solid support. The term "modulate", as used herein, refers to a change in the activity of HSP27P. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional or immunological properties of HSP27P. "Nucleic acid sequence" as used herein refers to an oligonucleotide, nucleotide, or polynucleotide, and fragments thereof, and to DNA or RNA of genomic or synthetic origin which may be single- or double-stranded, and represent the sense or antisense strand. "Fragments" are those nucleic acid sequences which are greater than 60 nucleotides than in length, and most preferably includes fragments that are at least 100 nucleotides or at least 1000 nucleotides, and at least 10,000 nucleotides in length. The term "oligonucleotide" refers to a nucleic acid sequence of at least about 6 nucleotides to about 60 nucleotides, preferably about 15 to 30 nucleotides, and more preferably about 20 to 25 nucleotides, which can be used in PCR amplification or a hybridization assay, or a microarray. As used herein, oligonucleotide is substantially equivalent to the terms "amplimers", "primers", "oligomers", and "probes", as commonly defined in the art. "Peptide nucleic acid", PNA as used herein, refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least five nucleotides in length linked to a peptide backbone of amino acid residues which ends in lysine. The terminal lysine confers solubility to the composition. PNAs may be pegylated to extend their lifespan in the cell where they preferentially bind complementary single stranded DNA and RNA and stop transcript elongation (Nielsen, P. E. et al. (1993) Anticancer Drug Des. 8:53-63). The term "portion", as used herein, with regard to a protein (as in "a portion of a given protein") refers to fragments of that protein. The fragments may range in size from five amino acid residues to the entire amino acid sequence minus one amino acid. Thus, a protein "comprising at least a portion of the amino acid sequence of SEQ ID NO:1" encompasses the full-length HSP27P and fragments thereof. The term "sample", as used herein, is used in its broadest sense. A biological sample suspected of containing nucleic acid encoding HSP27P, or fragments thereof, or HSP27P itself may comprise a bodily fluid, extract from a cell, chromosome, organelle, or membrane isolated from a cell, a cell, genomic DNA, RNA, or cDNA (in solution or bound to a solid support, a tissue, a tissue print, and the like. The terms "specific binding" or "specifically binding", as used herein, refers to that interaction between a protein or peptide and an agonist, an antibody and an antagonist. The interaction is dependent upon the presence of a particular structure (i.e., the antigenic determinant or epitope) of the protein recognized by the binding molecule. For example, if an antibody is specific for epitope "A", the presence of a protein containing epitope A (or free, unlabeled A) in a reaction containing labeled "A" and the antibody will reduce the amount of labeled A bound to the antibody. The terms "stringent conditions" or "stringency", as used herein, refer to the conditions for hybridization as defined by the nucleic acid, salt, and temperature. These conditions are well known in the art and may be altered in order to identify or detect identical or related polynucleotide sequences. Numerous equivalent conditions comprising either low or high stringency depend on factors such as the length and nature of the sequence (DNA, RNA, base composition), nature of the target (DNA, RNA, base composition), milieu (in solution or immobilized on a solid substrate), concentration of salts and other components (e.g., formamide, dextran sulfate and/or polyethylene glycol), and temperature of the reactions (within a range from about 5.degree. C. below the melting temperature of the probe to about 20.degree. C. to 25.degree. C. below the melting temperature). One or more factors be may be varied to generate conditions of either low or high stringency different from, but equivalent to, the above listed conditions. The term "substantially purified", as used herein, refers to nucleic or amino acid sequences that are removed from their natural environment, isolated or separated, and are at least 60% free, preferably 75% free, and most preferably 90% free from other components with which they are naturally associated. A "substitution", as used herein, refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively. "Transformation", as defined herein, describes a process by which exogenous DNA enters and changes a recipient cell. It may occur under natural or artificial conditions using various methods well known in the art. Transformation may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. Such "transformed" cells include stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome. They also include cells which transiently express the inserted DNA or RNA for limited periods of time. A "variant" of HSP27P, as used herein, refers to an amino acid sequence that is altered by one or more amino acids. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties, e.g., replacement of leucine with isoleucine. More rarely, a variant may have "nonconservative" changes, e.g., replacement of a glycine with a tryptophan. Analogous minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, LASERGENE software. The Invention The invention is based on the discovery of a new human heat shock 27 like protein (hereinafter referred to as "HSP27P"), the polynucleotides encoding HSP27P, and the use of these compositions for the diagnosis, prevention, or treatment of cancer and immune disorders. Nucleic acids encoding the HSP27P of the present invention were first identified in Incyte Clone 1362715 from the lung cDNA library (LUNGNOT12) using a computer search for amino acid sequence alignments. A consensus sequence, SEQ ID NO:2, was derived from the following overlapping and/or extended nucleic acid sequences: Incyte Clones 1362715 (LUNGNOT12), 1318802 (BLADNOT04), 659136 (BRAINOT03), 924154 (RATRNOT02), and 1238368 (LUNGTUT02). In one embodiment, the invention encompasses a polypeptide comprising the amino acid sequence of SEQ ID NO:1, as shown in FIG. 1. HSP27P is 196 amino acids in length and has a potential N-glycosylation, phosphorylation site at residue N.sub.138, two potential casein kinase II phosphorylation sites at residues S.sub.47 and T.sub.176, and six potential protein kinase C phosphorylation sites at residues S.sub.27, T.sub.63, T.sub.76, S.sub.104, S.sub.122, and T.sub.140. As shown in FIG. 2, HSP27P has chemical and structural homology with chicken heat shock protein (GI 63522; SEQ ID NO:3) and human heat shock protein 27 (GI 662841; SEQ ID NO:4). In particular, HSP27P and chicken heat shock protein (SEQ ID NO:3) share 38% identity, and HSP27P and human heat shock protein 27 (SEQ ID NO:4) share 37% identity. Northern analysis shows the expression of this sequence in various libraries, at least 75% of which are immortalized or cancerous. The invention also encompasses HSP27P variants. A preferred HSP27P variant is one having at least 80%, and more preferably at least 90%, amino acid sequence identity to the HSP27P amino acid sequence (SEQ ID NO:1) and which retains at least one biological, immunological or other functional characteristic or activity of HSP27P. A most preferred HSP27P variant is one having at least 95% amino acid sequence identity to SEQ ID NO:1. The invention also encompasses polynucleotides which encode HSP27P. Accordingly, any nucleic acid sequence which encodes the amino acid sequence of HSP27P can be used to produce recombinant molecules which express HSP27P. In a particular embodiment, the invention encompasses the polynucleotide comprising the nucleic acid sequence of SEQ ID NO:2 as shown in FIG. 1. It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of nucleotide sequences encoding HSP27P, some bearing minimal homology to the nucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of nucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the nucleotide sequence of naturally occurring HSP27P, and all such variations are to be considered as being specifically disclosed. Although nucleotide sequences which encode HSP27P and its variants are preferably capable of hybridizing to the nucleotide sequence of the naturally occurring HSP27P under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding HSP27P or its derivatives possessing a substantially different codon usage. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding HSP27P and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence. The invention also encompasses production of DNA sequences, or fragments thereof, which encode HSP27P and its derivatives, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents that are well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding HSP27P or any fragment thereof. Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed nucleotide sequences, and in particular, those shown in SEQ ID NO:2, under various conditions of stringency as taught in Wahl, G. M. and S. L. Berger (1987; Methods Enzymol. 152:399-407) and Kimmel, A. R. (1987; Methods Enzymol. 152:507-511). Methods for DNA sequencing which are well known and generally available in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, Sequenase.RTM. (US Biochemical Corp, Cleveland, Ohio), Taq polymerase (Perkin Elmer), thermostable T7 polymerase (Amersham, Chicago, Ill.), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE Amplification System marketed by Gibco/BRL (Gaithersburg, Md.). Preferably, the process is automated with machines such as the Hamilton Micro Lab 2200 (Hamilton, Reno, Nev.), Peltier Thermal Cycler (PTC200; MJ Research, Watertown, Mass.) and the ABI Catalyst and 373 and 377 DNA Sequencers (Perkin Elmer). The nucleic acid sequences encoding HSP27P may be extended utilizing a partial nucleotide sequence and employing various methods known in the art to detect upstream sequences such as promoters and regulatory elements. For example, one method which may be employed, "restriction-site" PCR, uses universal primers to retrieve unknown sequence adjacent to a known locus (Sarkar, G. (1993) PCR Methods Applic. 2:318-322). In particular, genomic DNA is first amplified in the presence of primer to a linker sequence and a primer specific to the known region. The amplified sequences are then subjected to a second round of PCR with the same linker primer and another specific primer internal to the first one. Products of each round of PCR are transcribed with an appropriate RNA polymerase and sequenced using reverse transcriptase. Inverse PCR may also be used to amplify or extend sequences using divergent primers based on a known region (Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186). The primers may be designed using commercially available software such as OLIGO 4.06 Primer Analysis software (National Biosciences Inc., Plymouth, Minn.), or another appropriate program, to be 22-30 nucleotides in length, to have a GC content of 50% or more, and to anneal to the target sequence at temperatures about 68.degree.-72.degree. C. The method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template. Another method which may be used is capture PCR which involves PCR amplification of DNA fragments adjacent to a known sequence in human and yeast artificial chromosome DNA (Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119). In this method, multiple restriction enzyme digestions and ligations may also be used to place an engineered double-stranded sequence into an unknown fragment of the DNA molecule before performing PCR. Another method which may be used to retrieve unknown sequences is that of Parker, J. D. et al. (1991; Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PromoterFinder.TM. libraries (Clontech, Palo Alto, Calif.) to walk genomic DNA. This process avoids the need to screen libraries and is useful in finding intron/exon junctions. When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. Also, random-primed libraries are preferable, in that they will contain more sequences which contain the 5' regions of genes. Use of a randomly primed library may be especially preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions. Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different fluorescent dyes (one for each nucleotide) which are laser activated, and detection of the emitted wavelengths by a charge coupled device camera. Output/light intensity may be converted to electrical signal using appropriate software (e.g. Genotyper.TM. and Sequence Navigator.TM., Perkin Elmer) and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for the sequencing of small pieces of DNA which might be present in limited amounts in a particular sample. In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode HSP27P may be used in recombinant DNA molecules to direct expression of HSP27P, fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced, and these sequences may be used to clone and express HSP27P. As will be understood by those of skill in the art, it may be advantageous to produce HSP27P-encoding nucleotide sequences possessing non-naturally occurring codons. For example, codons preferred by a particular prokaryotic or eukaryotic host can be selected to increase the rate of protein expression or to produce an RNA transcript having desirable properties, such as a half-life which is longer than that of a transcript generated from the naturally occurring sequence. The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter HSP27P encoding sequences for a variety of reasons, including but not limited to, alterations which modify the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, site-directed mutagenesis may be used to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, introduce mutations, and so forth. In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding HSP27P may be ligated to a heterologous sequence to encode a fusion protein. For example, to screen peptide libraries for inhibitors of HSP27P activity, it may be useful to encode a chimeric HSP27P protein that can be recognized by a commercially available antibody. A fusion protein may also be engineered to contain a cleavage site located between the HSP27P encoding sequence and the heterologous protein sequence, so that HSP27P may be cleaved and purified away from the heterologous moiety. In another embodiment, sequences encoding HSP27P may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers, M. H. et al. (1980) Nucl. Acids Res. Symp. Ser. 215-223, Horn, T. et al. (1980) Nucl. Acids Res. Symp. Ser. 225-232). Alternatively, the protein itself may be produced using chemical methods to synthesize the amino acid sequence of HSP27P, or a fragment thereof. For example, peptide synthesis can be performed using various solid-phase techniques (Roberge, J. Y. et al. (1995) Science 269:202-204) and automated synthesis may be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin Elmer). The newly synthesized peptide may be substantially purified by preparative high performance liquid chromatography (e.g., Creighton, T. (1983) Proteins, Structures and Molecular Principles, WH Freeman and Co., New York, N.Y.). The composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; Creighton, supra). Additionally, the amino acid sequence of HSP27P, or any part thereof, may be altered during direct synthesis and/or combined using chemical methods with sequences from other proteins, or any part thereof, to produce a variant polypeptide. In order to express a biologically active HSP27P, the nucleotide sequences encoding HSP27P or functional equivalents, may be inserted into appropriate expression vector, i.e., a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence. Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding HSP27P and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described in Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y., and Ausubel, F. M. et al. (1989) Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y. A variety of expression vector/host systems may be utilized to contain and express sequences encoding HSP27P. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (e.g., baculovirus); plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed. The "control elements" or "regulatory sequences" are those non-translated regions of the vector--enhancers, promoters, 5' and 3' untranslated regions--which interact with host cellular proteins to carry out transcription and translation. Such elements may vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, may be used. For example, when cloning in bacterial systems, inducible promoters such as the hybrid lacZ promoter of the PBLUESCRIPT phagemid (Stratagene, LaJolla, Calif.) or PSPORT1 plasmid (Gibco BRL) and the like may be used. The baculovirus polyhedrin promoter may be used in insect cells. Promoters or enhancers derived from the genomes of plant cells (e.g., heat shock, RUBISCO; and storage protein genes) or from plant viruses (e.g., viral promoters or leader sequences) may be cloned into the vector. In mammalian cell systems, promoters from mammalian genes or from mammalian viruses are preferable. If it is necessary to generate a cell line that contains multiple copies of the sequence encoding HSP27P, vectors based on SV40 or EBV may be used with an appropriate selectable marker. In bacterial systems, a number of expression vectors may be selected depending upon the use intended for HSP27P. For example, when large quantities of HSP27P are needed for the induction of antibodies, vectors which direct high level expression of fusion proteins that are readily purified may be used. Such vectors include, but are not limited to, the multifunctional E. coli cloning and expression vectors such as PBLUESCRIPT (Stratagene), in which the sequence encoding HSP27P may be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of .beta.-galactosidase so that a hybrid protein is produced; pIN vectors (Van Heeke, G. and S. M. Schuster (1989) J. Biol. Chem. 264:5503-5509); and the like. pGEX vectors (Promega, Madison, Wis.) may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. Proteins made in such systems may be designed to include heparin, thrombin, or factor XA protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will. In the yeast, Saccharomyces cerevisiae, a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH may be used. For reviews, see Ausubel et al. (supra) and Grant et al. (1987) Methods Enzymol. 153:516-544. In cases where plant expression vectors are used, the expression of sequences encoding HSP27P may be driven by any of a number of promoters. For example, viral promoters such as the 35S and 19S promoters of CaMV may be used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used (Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105). These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. Such techniques are described in a number of generally available reviews (see, for example, Hobbs, S. or Murry, L. E. in McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York, N.Y.; pp. 191-196). An insect system may also be used to express HSP27P. For example, in one such system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae. The sequences encoding HSP27P may be cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of HSP27P will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein. The recombinant viruses may then be used to infect, for example, S. frugiperda cells or Trichoplusia larvae in which HSP27P may be expressed (Engelhard, E. K. et al. (1994) Proc. Nat. Acad. Sci. 91:3224-3227). In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding HSP27P may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain a viable virus which is capable of expressing HSP27P in infected host cells (Logan, J. and Shenk, T. (1984) Proc. Natl. Acad. Sci. 81:3655-3659). In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained and expressed in a plasmid. HACs of 6 to 10M are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding HSP27P. Such signals include the ATG initiation codon and adjacent sequences. In cases where sequences encoding HSP27P, its initiation codon, and upstream sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including the ATG initiation codon should be provided. Furthermore, the initiation codon should be in the correct reading frame to ensure translation of the entire insert. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers which are appropriate for the particular cell system which is used, such as those described in the literature (Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162). In addition, a host cell strain may be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be used to facilitate correct insertion, folding and/or function. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC; Bethesda, Md.) and may be chosen to ensure the correct modification and processing of the foreign protein. For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express HSP27P may be transformed using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for 1-2 days in an enriched media before they are switched to selective media. The purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be proliferated using tissue culture techniques appropriate to the cell type. Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler, M. et al. (1977) Cell 11:223-32) and adenine phosphoribosyltransferase (Lowy, I. et al. (1980) Cell 22:817-23) genes which can be employed in tk.sup.- or aprt.sup.- cells, respectively. Also, antimetabolite, antibiotic or herbicide resistance can be used as the basis for selection; for example, dhfr which confers resistance to methotrexate (Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-70); npt, which confers resistance to the aminoglycosides neomycin and G-418 (Colbere-Garapin, F. et al (1981) J. Mol. Biol. 150:1-14) and als or pat, which confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively (Murry, supra). Additional selectable genes have been described, for example, trpB, which allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine (Hartman, S. C. and R. C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-51). Recently, the use of visible markers has gained popularity with such markers as anthocyanins, .beta. glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, being widely used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes, C. A. et al. (1995) Methods Mol. Biol. 55:121-131). Although the presence/absence of marker gene expression suggests that the gene of interest is also present, its presence and expression may need to be confirmed. For example, if the sequence encoding HSP27P is inserted within a marker gene sequence, transformed cells containing sequences encoding HSP27P can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding HSP27P under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well. Alternatively, host cells which contain the nucleic acid sequence encoding HSP27P and express HSP27P may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein. The presence of polynucleotide sequences encoding HSP27P can be detected by DNA-DNA or DNA-RNA hybridization or amplification using probes or fragments or fragments of polynucleotides encoding HSP27P. Nucleic acid amplification based assays involve the use of oligonucleotides or oligomers based on the sequences encoding HSP27P to detect transformants containing DNA or RNA encoding HSP27P. A variety of protocols for detecting and measuring the expression of HSP27P, using either polyclonal or monoclonal antibodies specific for the protein are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on HSP27P is preferred, but a competitive binding assay may be employed. These and other assays are described, among other places, in Hampton, R. et al. (1990; Serological Methods, a Laboratory Manual, APS Press, St Paul, Minn.) and Maddox, D. E. et al. (1983; J. Exp. Med. 158:1211-1216). A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding HSP27P include oligolabeling, nick translation, end-labeling or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding HSP27P, or any fragments thereof may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits (Pharmacia & Upjohn, (Kalamazoo, Mich.); Promega (Madison Wis.); and U.S. Biochemical Corp., Cleveland, Ohio). Suitable reporter molecules or labels, which may be used for ease of detection, include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents as well as substrates, cofactors, inhibitors, magnetic particles, and the like. Host cells transformed with nucleotide sequences encoding HSP27P may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or contained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode HSP27P may be designed to contain signal sequences which direct secretion of HSP27P through a prokaryotic or eukaryotic cell membrane. Other constructions may be used to join sequences encoding HSP27P to nucleotide sequence encoding a polypeptide domain which will facilitate purification of soluble proteins. Such purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp., Seattle, Wash.). The inclusion of cleavable linker sequences such as those specific for Factor XA or enterokinase (Invitrogen, San Diego, Calif.) between the purification domain and HSP27P may be used to facilitate purification. One such expression vector provides for expression of a fusion protein containing HSP27P and a nucleic acid encoding 6 histidine residues preceding a thioredoxin or an enterokinase cleavage site. The histidine residues facilitate purification on IMAC (immobilized metal ion affinity chromatography as described in Porath, J. et al. (1992, Prot. Exp. Purif. 3: 263-281) while the enterokinase cleavage site provides a means for purifying HSP27P from the fusion protein. A discussion of vectors which contain fusion proteins is provided in Kroll, D. J. et al. (1993; DNA Cell Biol. 12:441-453). In addition to recombinant production, fragments of HSP27P may be produced by direct peptide synthesis using solid-phase techniques (Merrifield J. (1963) J. Am. Chem. Soc. 85:2149-2154). Protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be achieved, for example, using Applied Biosystems 431A Peptide Synthesizer (Perkin Elmer). Various fragments of HSP27P may be chemically synthesized separately and combined using chemical methods to produce the full length molecule. THERAPEUTICS Chemical and structural homology exists among HSP27P (SEQ ID NO:1), chicken heat shock protein (GI 63522; SEQ ID NO:3) and human heat shock protein 27 (GI 662841; SEQ ID NO:4). Northern analysis shows that HSP27P is expressed in cancer cells where it may promote the survival of malignant cells. The protective effect of HSP27P, however, may also be utilized to protect normal cells and tissues from the stress caused by pathological or cellular processes. In addition, expression of HSP27P may be associated with the cascade of events that initiate and maintain immune disorders. In one embodiment, an antagonist of HSP27P may be administered to a subject in conjunction with radiation or chemotherapy treatment for cancer. By blocking the protective effect of HSP27P, one can increase the efficacy of radiation therapy or chemotherapy. Administration of HSP27P may be used in subjects who are being treated for a variety of types of cancer including, but not limited to, adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, and teratocarcinoma and particularly cancers of the adrenal gland, bone, brain, breast, esophagus, gastrointestinal tract, heart, kidney, liver, lung, ovaries, pancreas, parathyroid, pituitary gland, prostate, salivary gland, spleen, stomach, thymus, thyroid, testes, and uterus. The antagonist of HSP27P may be administered to the subject systemically or directly to the subject's cancerous cells or tissues. In one aspect, antibodies which are specific for HSP27P may be used directly as an antagonist, or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which show increased expression of HSP27P. In another embodiment, a vector expressing the complement or antisense of the polynucleotide encoding HSP27P may be administered to a subject treat or prevent cancer, including, but not limited to those cancers listed above. In another embodiment, an antagonist of HSP27P may be administered to a subject to treat or prevent an immune disorder. These disorders include, but are not limited to, Alzheimers disease, Crohns' disease, ulcerative colitis, steroid receptor responsiveness; immune disorders such as Addison's disease, osteoarthritis, osteoporosis, autoimmune thyroiditis, asthma, bronchitis, Crohn's disease, ulcerative colitis, diabetes mellitus, emphysema, atrophic gastritis, glomerulonephritis, irritable bowel syndrome, and scleroderma. In one aspect, antibodies which are specific for HSP27P may be used directly as an antagonist, or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which show increased expression of HSP27P. In another embodiment, a vector expressing the complement or antisense of the polynucleotide encoding HSP27P may be administered to a subject treat or prevent an immune disorder, including, but not limited to those immune disorders listed above. In another embodiment, a vector capable of expressing HSP27P, or a fragment or a derivative thereof, may be administered to a subject to prevent tissue damage associated with lupus erythematosus, multiple sclerosis, myasthenia gravis, atherosclerosis, ankylosing spondylitis, heart attacks, ischemia, damage to cells such as heart muscle and nerve cells caused by ischemia, free radicals, toxins, and ultraviolet exposure; rheumatoid arthritis, wound healing, sterility, and insulin dependent diabetes. In another embodiment, agonists of HSP27P may be administered to a subject to treat or prevent tissue damage as described above. In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects. An antagonist of HSP27P may be produced using methods which are generally known in the art. In particular, purified HSP27P may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind HSP27P. Antibodies to HSP27P may be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies, (i.e., those which inhibit dimer formation) are especially preferred for therapeutic use. For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others, may be immunized by injection with HSP27P or any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable. It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to HSP27P have an amino acid sequence consisting of at least five amino acids and more preferably at least 10 amino acids. It is also preferable that they are identical to a portion of the amino acid sequence of the natural protein, and they may contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of HSP27P amino acids may be fused with those of another protein such as keyhole limpet hemocyanin and antibody produced against the chimeric molecule. Monoclonal antibodies to HSP27P may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique (Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R. J. et al. (1983) Proc. Natl. Acad. Sci. 80:2026-2030; Cole, S. P. et al. (1984) Mol. Cell Biol. 62:109-120). In addition, techniques developed for the production of "chimeric antibodies", the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity can be used (Morrison, S. L. et al. (1984) Proc. Natl. Acad. Sci. 81:6851-6855; Neuberger, M. S. et al. (1984) Nature 312:604-608; Takeda, S. et al. (1985) Nature 314:452-454). Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce HSP27P-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobin libraries (Burton D. R. (1991) Proc. Natl. Acad. Sci. 88:11120-3). Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature (Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. 86: 3833-3837; Winter, G. et al. (1991) Nature 349:293-299). Antibody fragments which contain specific binding sites for HSP27P may also be generated. For example, such fragments include, but are not limited to, the F(ab')2 fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity (Huse, W. D. et al. (1989) Science 254:1275-1281). Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between HSP27P and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering HSP27P epitopes is preferred, but a competitive binding assay may also be employed (Maddox, supra). In another embodiment of the invention, the polynucleotides encoding HSP27P, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding HSP27P may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding HSP27P. Thus, complementary molecules or fragments may be used to modulate HSP27P activity, or to achieve regulation of gene finction. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments, can be designed from various locations along the coding or control regions of sequences encoding HSP27P. Expression vectors derived from retro viruses, adenovirus, herpes or vaccinia viruses, or from various bacterial plasmids may be used for delivery of nucleotide sequences to the targeted organ, tissue or cell population. Methods which are well known to those skilled in the art can be used to construct vectors which will express nucleic acid sequence which is complementary to the polynucleotides of the gene encoding HSP27P. These techniques are described both in Sambrook et al. (supra) and in Ausubel et al. (supra). Genes encoding HSP27P can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide or fragment thereof which encodes HSP27P. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector and even longer if appropriate replication elements are part of the vector system. As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5' or regulatory regions of the gene encoding HSP27P (signal sequence, promoters, enhancers, and introns). Oligonucleotides derived from the transcription initiation site, e.g., between positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using "triple helix" base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature (Gee, J. E. et al. (1994) In: Huber, B. E. and B. I. Carr, Molecular and Immunologic Approaches, Futura Publishing Co., Mt. Kisco, N.Y.). The complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes. Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. Examples which may be used include engineered hammerhead motif ribozyme molecules that can specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding HSP27P. Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites which include the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides corresponding to the region of the target gene containing the cleavage site may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays. Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding HSP27P. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA constitutively or inducibly can be introduced into cell lines, cells, or tissues. RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases. Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections or polycationic amino polymers (Goldman, C. K. et al. (1997) Nature Biotechnology 15:462-66; incorporated herein by reference) may be achieved using methods which are well known in the art. Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans. An additional embodiment of the invention relates to the administration of a pharmaceutical composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of HSP27P, antibodies to HSP27P, mimetics, agonists, antagonists, or inhibitors of HSP27P. The compositions may be administered alone or in combination with at least one other agent, such as stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier, including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs or hormones. The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means. In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing Co., Easton, Pa.). Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient. Pharmaceutical preparations for oral use can be obtained through combination of active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums including arabic and tragacanth; and proteins such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate. Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage. Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with a filler or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers. Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art. The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes. The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1-50 mM histidine, 0.1%-2% sucrose, and 2-7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use. After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of HSP27P, such labeling would include amount, frequency, and method of administration. Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art. For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models, usually mice, rabbits, dogs, or pigs. The animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans. A therapeutically effective dose refers to that amount of active ingredient, for example HSP27P or fragments thereof, antibodies of HSP27P, agonists, antagonists or inhibitors of HSP27P, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., ED50 (the dose therapeutically effective in 50% of the population) and LD50 (the dose lethal to 50% of the population). The dose ratio between therapeutic and toxic effects is the therapeutic index, and it can be expressed as the ratio, LD50/ED50. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration. |
PATENT PHOTOCOPY | Available on request |
Want more information ? Interested in the hidden information ? Click here and do your request. |