Main > INK > Jet Printing Inks > Substrate > Paper

Product Japan. N

PATENT ASSIGNEE'S COUNTRY Japan
UPDATE 10.99
PATENT NUMBER This data is not available for free
PATENT GRANT DATE 05.10.99
PATENT TITLE Ink jet recording paper

PATENT ABSTRACT An ink jet recording paper for recording with an ink based on a water-soluble dye having mainly carboxyl groups as hydrophilic functional groups, said recording paper not containing calcium carbonate, and being formed from a base paper comprising kaolin and/or illite as filler and a recording layer provided on at least one side of said base paper comprising a water-absorbing pigment and an aqueous binder as its principal components, the amount of solids in said layer lying in the range 0.5-3.0 g/m.sup.2 on each side of said paper on which said layer is provided.

PATENT INVENTORS This data is not available for free
PATENT ASSIGNEE This data is not available for free
PATENT FILE DATE 08.03.96
PATENT FOREIGN APPLICATION PRIORITY DATA This data is not available for free
PATENT REFERENCES CITED This data is not available for free
PATENT CLAIMS What is claimed is:

1. An ink jet recording paper for recording with an ink having a water-soluble dye with hydrophilic functional groups comprising carboxyl groups, said recording paper not containing calcium carbonate, and being formed from a base paper comprising kaolin and/or illite as filler and a recording layer coated on at least one side of said base paper comprising a water-absorbing pigment and an aqueous binder, the amount of solids in said layer lying in the range 0.5-3.0 g/m.sup.2 on each side of said paper on which said layer is coated.

2. An ink jet recording paper as defined in claim 1, wherein the amount of kaolin and/or illite used is in the range of 3-30 wt % of the base paper.

3. An ink jet recording paper as defined in claim 1, wherein the proportion of the binder lies within a range of 10-100 weight parts to 100 parts of pigment.
--------------------------------------------------------------------------------

PATENT DESCRIPTION FIELD OF THE INVENTION

This invention relates to an ink jet recording paper, and more specifically to an ink jet recording paper having good color rendering properties when used not only with conventional types of ink, but also with water-soluble inks having carboxyl groups as functional groups having excellent waterproof properties after recording.

BACKGROUND OF THE INVENTION

In ink jet recording, small ink droplets are ejected by one of a variety of different mechanisms so that they adhere to a recording paper on which they form dots. Apart from the fact that this method is less noisy than dot impact recording, it is easy to achieve full color images and high speed printing is possible. However, the inks used in ink jet recording are normally water-based inks that employ direct dyes or acidic dyes, and therefore have poor drying properties.

The properties required of an ink jet recording paper used in this ink jet recording method are:

(1) high ink drying speed,

(2) high optical density of image,

(3) the ink does not overflow or blur,

(4) the paper does not crease due to absorbing ink,

(5) the print is highly waterproof.

Now that the color technology of ink jet printers is improving and their prices are decreasing, the use of color ink jet printers by individual consumers is rapidly becoming more widespread.

These color printers reproduce a variety of colors by combining inks of the single colors cyan, magenta, yellow and black inks, consequently the amount of ink adhering in the mixed ink areas is from 2 to 3 times as much as the amount of ink adhering in the case of monochrome printers. Hence, when ordinary non-coated papers, such as the kind of paper used in conventional monochrome printers, are used in a color printer, the amount of ink absorbed is inadequate resulting in strike through or overflow. Conventional heavily coated type papers, on the other hand, were difficult to handle and did not have the texture of ordinary paper. There was therefore a demand for a lightly coated paper. To improve the waterproof properties of print produced by ink jet printers, the water-soluble dyes used in inks are made more difficultly soluble by replacing sulfo groups in the dye with carboxyl groups (R. W. Kenyon, 9th International Congress on Advances in Non-Impact Printing Technologies/Japan Hardcopy '93, p. 279 (1993)).

As carboxyl groups are usually weakly acidic, under alkaline conditions dissociation is promoted so that the dye dissolves, but under relatively strongly acidic conditions, it is present as a free carboxylic acid so that dissolution is prevented. The improved waterproof properties of the dye are due to this principle. The dye is dissolved in ink of comparatively high pH, but after printing when the dye adheres to paper, as the pH of the paper surface is relatively low, the dye is present as the free acid and is therefore rendered difficultly soluble. Such dyes which have been rendered difficultly soluble are described together with their chemical structure in the aforementioned reference in the literature, and they all possess carboxyl groups.

Of these dyes, some possess both carboxyl groups and sulfo groups, but it is the solubility of the carboxyl groups which varies due to the change of pH before and after printing. Since dyes which possess carboxyl groups react strongly with alkaline earth metal ions, changes of color rendering properties easily occur, and salts which are difficultly soluble in water are easily formed.

In the event of such a change of color rendering properties, the print quality of printed documents obviously deteriorates, and if a difficultly soluble salt is produced, a metallic gloss appears which also impairs print quality.

In recent years, the use of neutral paper has become more widespread replacing the acidic paper which was mainly used conventionally. This neutral paper comprises calcium carbonate as a filler, and is known as calcium carbonate paper. When the aforesaid water-resistant inks were used on this neutral paper, it was therefore a frequent occurrence that the calcium carbonate in the paper reacted with the aforesaid dye comprising carboxyl groups, causing a change of color rendering properties and a deterioration of print quality.

When the inventors attempted to improve these defects by providing a recording layer on neutral paper, they found that even in the case of a coated paper using calcium carbonate paper as a base paper, a lightweight coating of approximately 7 g/m.sup.2 or less did not suffice to completely cover the base paper so that the same deterioration of print quality occurred as mentioned hereinabove.

They found moreover that when a relatively strongly alkaline salt such as calcium carbonate was used as a filler, the carboxyl groups in the dye tended to dissociate even if the calcium carbonate did not react with the pigment so that the improvement of waterproof properties was not as great as had initially been expected. There was also a disadvantage in that the dye penetrated the paper so that optical density decreased.

The inventors discovered as a result of intensive studies that when recording was performed using water-soluble inks comprising mainly carboxyl groups as hydrophilic functional groups, an ink jet recording paper which provided high print quality and printed materials having excellent waterproof properties could be obtained even with a lightweight coating by avoiding the use of calcium carbonate as filler and using a base paper comprising kaolin and/or illite.

SUMMARY OF THE INVENTION

It is therefore an object of this invention to provide an ink jet recording paper which provides excellent print quality without any change of color rendering properties or appearance of metallic gloss.

The aforesaid aims and objects of the invention are attained by an ink jet recording paper using a water-soluble dye comprising mainly carboxyl groups as hydrophilic functional groups, this recording paper comprising (1) a base paper not containing calcium carbonate but comprising a kaolin and/or illite as a filler, and (2) a recording layer provided on at least one side of this base paper comprising a water-absorbing pigment and aqueous binder as its principal components, the amount of solids in this layer lying in the range 0.5-3.0 g/m.sup.2 on each side of the paper on which the layer is provided.

DETAILED DESCRIPTION OF THE INVENTION

The ink using a water-soluble dye comprising mainly carboxyl groups as functional groups according to this invention, is an ink (referred to hereinafter simply as ink) comprising a water-soluble dye comprising at least carboxyl groups of which the dissociation is promoted under alkaline conditions causing dissolution, but which exists as a free carboxylic acid under relatively strongly acidic conditions causing the dye to become difficultly soluble.

Such a dye dissolves in ink of relatively high pH, but after printing when the adheres to a paper surface, as the pH of the paper surface is relatively low, the dye is converted to the free acid form and is thereby rendered difficultly soluble. Specific examples of such dyes are described in R. W. Kenyon, 9th International Congress on Advances in Non-Impact Printing Technologies/Japan Hardcopy '93, p. 279 (1993).

The filler used in the base paper of the ink jet recording paper according to this invention does not contain any calcium carbonate and comprises kaolin and/or illite in order to prevent reaction with the dye in the ink which would cause a change of color rendering properties, appearance of a metallic gloss due to production of a salt difficultly soluble in water and deterioration of print quality.

Kaolin is a naturally occurring substance represented by the formula Al.sub.4 ›Si.sub.4 O.sub.10 !(OH).sub.8, and the pH of a dispersed slurry of kaolin is in the vicinity of 5. Illite is a naturally occurring substance represented by the formula K.sub.1.5 AL.sub.4 ›Si.sub.6.5 AL.sub.1.5 !O.sub.20 (OH).sub.4, and the pH of a dispersed slurry of illite is in the vicinity of 7. Consequently, neither kaolin nor illite has any effect on printing. The amount of kaolin and/or illite used is normally in the range of 3-30 wt % of the base paper.

There is no particular limitation on the pigment used for the recording layer of the recording paper according to this invention provided that it is a water-absorbing pigment. The use of amorphous silica which has a relatively large specific surface area is to be preferred. The amorphous silica referred to herein is the white carbon and amorphous silica referred to on p.267 of the Applied Chemistry Section of the Chemical Handbook (Kagaku Binran Oyou Kagaku Hen) by the Chemical Society of Japan, published on Oct. 15, 1986 by Maruzen K.K.

There is no particular limitation on the binder used in the recording layer of the recording paper according to this invention provided that it is an aqueous binder. Examples of such binders are starches such as oxidized starch and esterified starch, cellulose derivatives such as carboxymethylcellulose and hydroxyethylcellulose, polyvinyl alcohol and its derivatives, polyvinylpyrrolidone, casein, gelatin, soybean protein, styrene/acrylic resins and their derivatives, styrene/butadiene latex, acrylic emulsions, and vinyl acetate emulsion. The proportion of the binder preferably lies within a range of 10-100 weight parts to 100 weight parts of pigment.

The coating color used for the recording layer is prepared by blending the aforesaid pigment and binder with water, and various salts may be added as may be appropriate so as to adjust the pH to 5.5-7.5. The pH may be adjusted also by adjusting the pH of the pulp slurry used for the base paper.

When the pH is less than 5.5, the color rendering properties of phthalocyanin type cyan inks are particularly adversely affected. On the other hand, increasing the pH above 7.5 leads to a deterioration of waterproof properties or the optical density of printed materials. pH may be measured by the method described hereinafter.

Sizing agents, water repellents, pigment dispersants, water retention agents, thickeners, defoaming agents, preservatives, coloring agents, waterproofing agents, wetting agents, fluorescent dyes, ultraviolet absorption agents and cationic polymer electrolytes may be added to the coating color as necessary and appropriate.

The coating may be chosen from any known methods using a coating tool such as a blade coater, air knife coater, roll coater, brush coater, kiss coater, squeeze coater, curtain coater, bar coater, gravure coater or comma coater. These may be used either as off-machine or on-machine coaters. In the case of on-machine coating, coating tools known in the art such as size press coaters and gate roll coaters may also be used.

The coating of the recording layer is such that the recording paper retains the textural properties of ordinary paper, the amount of solids in the coating preferably lying within the range of 0.5-3.0 g/m.sup.2, and more preferably within the range of 0.7-2.5 g/m.sup.2.

Although the ink jet recording paper according to this invention has a lightweight coating, there is no change of color rendering properties nor appearance of a metallic gloss, and excellent print quality is obtained even when recording is performed on the paper using a water-soluble dye comprising mainly carboxyl groups as hydrophilic functional groups. In addition, the printed materials so obtained have excellent waterproof properties.

PATENT EXAMPLES This data is not available for free
PATENT PHOTOCOPY Available on request

Want more information ?
Interested in the hidden information ?
Click here and do your request.


back