Main > POLYMERS > Poly(Amide) > Stabilization > Synergistic Additive system > Anoxanilide. And > Sterically Hidered Ph Phosphonite

Product UK. C

PATENT ASSIGNEE'S COUNTRY UK
UPDATE 05.00
PATENT NUMBER This data is not available for free
PATENT GRANT DATE 16.05.00
PATENT TITLE Synergistic additive system for the stabilization of polyamides

PATENT ABSTRACT Disclosed is a process for stabilizing polyamides against the damage effected by light, heat and/or oxidation while improving the differential dyeability, and processing stability therefore, comprising incorporating therein by melt-processing a synergistic additive system resulting in a uniform and intimate mixture with said polyamide, said additive system is selected from the group consisting of (I), (II) and (III) (I) is from 0.01% to 1% by weight of a sterically hindered phenylphosphonite (Ia) with from 0.05% to 5% by weight of oxanilide (Ib) or said (Ia) together with from 0.05% to 5% by weight of an aromatic di- or tri-carbonyl compound containing at least one, and preferably two hindered amine moieties (Ic); (II) is from 0.05% to 5% by weight of oxanilide (IIa) together with from 0.05% to 5% by weight of a aromatic di- or tri-carbonyl compound (IIb) containing at least one hindered amine moieties; (III) is from 0.01% to 1% by weight of a sterically hindered phenyl phosphonite (Ia), from 0.05% to 5% by weight of a oxanilide (Ib) and from 0.05% to 5% by weight of an aromatic di- or tri-carbonyl compound; wherein the percentages represent grams of additives used per hundred grams of polymer. Also disclosed are polyamide articles selected from the group consisting of molded articles, extruded articles and fibers, which optionally contain organic dyes, exhibiting outstanding color brightness and color stability.

PATENT INVENTORS This data is not available for free
PATENT ASSIGNEE This data is not available for free
PATENT FILE DATE 24.08.98
PATENT REFERENCES CITED This data is not available for free
PATENT PARENT CASE TEXT This data is not available for free
PATENT CLAIMS What is claimed is:

1. A process for stabilizing polyamide polymers against the damage effected by light, heat and/or oxidation comprising incorporating therein by melt-processing a synergistic additive system resulting in a uniform and intimate mixture with said polyamide, said additive system is selected from the groups consisting of (I) or (II), wherein

(I) comprises from 0.01% to 1% by weight of a sterically hindered phenyl phosphonite (Ia), and from 0.05% to 5% by weight of anoxanilide (Ib), or said (Ia) together with from 0.05% to 5% by weight of an aromatic di- or tri-carbonyl compound containing at least one hindered amine moiety adjacent to said carbonyl(s) (Ic); and

(II) comprises from 0.05% to 5% by weight of and oxanilide (IIa), and from 0.05% to 5% by weight of said aromatic di- or tri-carbonyl compound containing at least one hindered amine moiety adjacent to said carbonyl(s) (IIb),

wherein the percentages represent grams of additives used per hundred grams of polymer.

2. The process according to claim 1 wherein the weight ratio of (Ia) to (Ib) is from 1:3 to 1:10, the weight ratio of (Ia) to (Ic) is from 1:3 to 1:10, and the weight ratio of (IIa) to (IIb) is from 1:5 to 5:1.

3. The process according to claim 1 wherein the weight ratio of (Ia) to (Ib) is from 1:3 to 1:6, the weight ratio of (Ia) to (Ic) is from 1:3 to 1:6 and the weight ratio of (IIa) to (IIb) is from 1:2 to 3:1.

4. The process according to claim 1 wherein the weight ratio of (Ia) to (Ib) and (Ia) to (Ic) is 1:4, 1:5 or 1:6, and the weight ratio of (IIa) to (IIb) is from 1:2 to 2:1.

5. The process according to claim 1 wherein said sterically hindered phenyl phosphonite has the following structure: ##STR24## wherein each R is independently unsubstituted phenyl or a substituted phenyl with one, two or three alkyl groups each having from 1 to 12 carbon atoms or a substituted phenyl with one or two cumyl groups, n is 0 or 1, and A is an aromatic, mono- or difunctional C.sub.5 -C.sub.30 moiety optionally containing further heteroatoms.

6. The process according to claim 5 wherein said sterically hindered phenyl phosphonite comprises a condensation product of a sterically hindered alkyl phenol with the Friedel-Crafts-reaction product of biphenyl and PCl.sub.3.

7. The process according to claim 6 wherein said sterically hindered phenyl phosphonite contains a compound of the following formula ##STR25##

8. The process according to claim 6 wherein said sterically hindered alkyl phenol is selected from the group consisting of 2,4-di-tert-butyl phenol, 2-tert-butyl-4-cumyl phenol, 2,4-dicumyl phenol and 2,4-di-tert-butyl-5-methyl phenol.

9. The process according to claim 1 wherein said oxanilide has the following structure: R.sub.1 and R.sub.2 are each independently of the other hydrogen, unsubstituted C.sub.1 -C.sub.18 alkoxy or C.sub.1 -C.sub.18 alkoxy which is substituted by halogen, hydroxy, C.sub.1 -C.sub.5 alkoxy, carboxyl groups, carbamyl groups or C.sub.1 -C.sub.12 alkoxycarbonyl groups, or is C.sub.3 -C.sub.5 alkenyloxy, unsubstituted benzyloxy or benzyloxy which is substituted by halogen or C.sub.1 -C.sub.5 alkyl, aliphatic acyloxy containing up to 18 carbon atoms, unsubstituted benzoyloxy or benzoyloxy which is substituted by halogen or C.sub.1 -C.sub.4 alkyl, or a radical of formula --A--SO.sub.3 M, wherein A is a direct bond or a divalent radical of formula --O--Q--, and Q is unsubstituted or hydroxy-substituted C.sub.1 -C.sub.6 alkylene, M is hydrogen or alkali metal, R.sub.3 and R.sub.4 are each independently of the other hydrogen, halogen, C.sub.1 -C.sub.12 alkyl, haloalkyl, phenyl or phenyl-C.sub.1 -C.sub.5 alkyl, or two radicals R.sub.3 and/or R.sub.4 in ortho-position each together form a fused 6-membered aromatic carbon ring, and wherein m and n are 1 or 2 and p and q are 1,2 or 3.

10. The process according to claim 9 wherein said oxanilide has the following structure: ##STR26## wherein R.sub.1 and R.sub.2 are each independently, identical or different substituents selected from the group consisting of hydrogen, linear, branched or cyclic alkyl having 1 to 12 carbon atoms, and alkoxy groups having 1 to 12 carbon atoms and 1 to 4 oxygen atoms.

11. The process according to claim 10 wherein each R.sub.1 is independently C.sub.1-12 alkyl or alkoxyl and each R.sub.2 is hydrogen.

12. The process according to claim 1 wherein (II) is selected and wherein said aromaticdi- or tri-carbonyl (ester)amide contains at least one hindered amine group adjacent to the carbonyl carbon, said aromatic di- or tri-carbonyl (ester)amide is given by: ##STR27## where p is 0 or 1, wherein at least one of R.sub.1 and R.sub.2 are independently, identical or different sterically hindered amino groups and the group(s) R.sub.1 and R.sub.2 other than sterically hindered amino group include, independently of the other, unsubstituted C.sub.1 -C.sub.18 alkoxy or alkamino which may optionally be substituted by halogen, hydroxy, C.sub.1 -C.sub.5 alkoxy, carboxyl groups, carbamyl groups or C.sub.1 -C.sub.12 alkoxycarbonyl groups, or is C.sub.3 -C.sub.5 alkenyloxy, unsubstituted benzyloxy or benzyloxy which is substituted by halogen or C.sub.1 -C.sub.5 alkyl, aliphatic acyloxy containing up to 18 carbon atoms, unsubstituted benzoyloxy or benzoyloxy which is substituted by halogen or C.sub.1 -C.sub.4 alkyl.

13. The process of claim 12 wherein said hindered amino groups are: ##STR28## wherein R and R' are independently either hydrogen, C.sub.1-12 alkyl, C.sub.1-8 alkoxy, or --COR.sub.3, n is 0 or 1, R.sub.3 is hydrogen, C.sub.1-6 alkyl, phenyl, --COO(C.sub.1-4 alkyl) or NR.sub.15 R.sub.16, where R.sub.15 and R.sub.16 are independently hydrogen, C.sub.1-12 alkyl, C.sub.5-6 cycloalkyl, phenyl or (C.sub.1-12 alkyl)phenyl; or R.sub.15 and R.sub.16 together with the N-atom to which they are attached form a five- to seven-membered ring which may contain an additional N- or O-atom (preferably forming a piperidine or morpholine ring); and Y is the group --NCO or --OCN, where CO forms part of the cyclic structure; each R.sub.6 of structure (iii) independently is selected from hydrogen, C.sub.1-12 alkyl or phenyl provided only one R.sub.6 can be phenyl, or both groups R.sub.6 together form the group --(CH.sub.2).sub.m --; where m is 2 to 11, --C(CH.sub.3).sub.2 --, --C(CH.sub.3).sub.2 --CH.sub.2 --CH.sub.2 -- or --C(CH.sub.3)CH.sub.2 CH.sub.2 CH(CH.sub.3)--.

14. The process according to claim 12 wherein said aromatic (ester)amide is adicarboxylic (ester) amide with the structure: ##STR29## wherein at least one of R.sub.1 and R.sub.2 are independently, identical or different hindered amino groups(s), and the non-hindered amino group is independently selected from unsubstituted C.sub.1 -C.sub.18 alkoxy or alkamino which may be substituted by halogen, hydroxy, C.sub.1 -C.sub.5 alkoxy, carboxyl groups, carbamyl groups or C.sub.1 -C.sub.12 alkoxycarbonyl groups, or is C.sub.3 -C.sub.5 alkenyloxy, unsubstituted benzyloxy or benzyloxy which is substituted by halogen or C.sub.1 -C.sub.5 alkyl, aliphatic acyloxy containing up to 18 carbon atoms, unsubstituted benzoyloxy or benzoyloxy which is substituted by halogen or C.sub.1 -C.sub.4 alkyl.

15. The process according to claim 1 wherein said (ester)amide is a dicarboxylic-(estermide) of the structure ##STR30## wherein R.sub.2 ' is independently C.sub.1-20 alkyl, C.sub.1-20 alkoxyalkyl, C.sub.1-20 hydroxyalkyl, C.sub.1-20 alkenyl, substituted C.sub.1-20 alkenyl groups, C.sub.1-20 -alkoxy-C.sub.1-20 -alkyl groups, C.sub.1-20 -oxy-N-C.sub.1-20 -alkyl groups, -N-cyclic-C.sub.1-10 -alkyl groups, and cyclic-N-C.sub.1-10 -alkyl groups --COR.sub.4, wherein R.sub.4 is hydrogen, C.sub.1-6 alkyl, phenyl, and --C.sub.1-20 COO(H or C.sub.1-4 -alkyl).

16. The process according to claim 1 wherein said (ester amide) has the structure: ##STR31## and said oxanilide has the following structure: ##STR32## wherein R.sub.1 and R.sub.2 are each independently, identical or different moieties selected from hydrogen, linear, branched or cyclic alkyl or alkoxy groups having from 2 to 12 carbon atoms and from 1 to 4 oxygen atoms.

17. The process according to claim 1 wherein said additive system is selected from the group (Ill)

(Ill) is from 0.01% to 1% by weight of a sterically hindered phenyl phosphonite, from 0.05% to 5% by weight of said oxanilide and from 0.05% to 5% by weight of said aromatic di- or tri-carbonyl compound, and

wherein the percentages represent grams of additives used per hundred grams of polymer.

18. A polyamide article selected from the group consisting of molded articles, extruded articles and fibers which comprise polyamide, optionally an organic dye, and in intimate homogeneous mixture therewith, an additive system selected from the group consisting of (I), (II) and (III) as defined in claim 1 or 14.

19. The article according to claim 15 comprising an additive system as defined in any one of the preceding claims 2 to 14.
--------------------------------------------------------------------------------

PATENT DESCRIPTION FIELD OF THE INVENTION

The invention pertains to methods to stabilize polyamide polymers.

BACKGROUND OF INVENTION

The service life of polyamides is dependent on (1) the raw materials used in the manufacturing process, (2) the additives used in stabilizing the polymer against damage brought about by melt-processing and (3) environmental weathering factors. A serious drawback to providing stabilization systems for polyamides lies in the fact that the maximum concentration of many additives is limited. Polyamides are heretofore regarded as poor in solvating additives, especially non-polar additives having relatively low molecular weight in relation to the polyamide polymer. The aesthetics of an article such as made by molding processes can be affected such as by migration, blooming or plate-out of the additives. On the other hand, manufacturers of polyamide-based molded and extruded goods strive to include low concentrations of additives for economic reasons.

Oxalic acid di-aryl anilides, formed on condensing the acid, partial ester or di-ester with one or two moles of aniline derivatives are known light stabilizers. Unsymmetrical oxalic acid dianilides are described, for example in U.S. Pat. No. 4,003,875.

U.S. Pat. No. 5,045,083 discloses polyamide, copper complex and oxanilide UV absorber.

U.S. Pat. No. 4,544,691 discloses stabilizer compounds containing UV-absorbing derivatives of oxanilide, benzalmalonates, .alpha.-cyanocinnamates and o-hydroxyphenylbenzotriazoles, having a reactive phenolic group(s). These additives are suggested for use with polymer coating materials.

U.S. Pat. No. 5,338,319 discloses a polyamide stabilization system containing a copper complex, and water soluble oxalic acid diaryl amide.

U.S. Pat. No. 5,380,774 discloses a polyamide molding composition containing a hindered phenolic antioxidant, phosphite, hindered amine stabilizer and optionally a benzotriazole.

European Publication number EP 0379470 discloses compounds used to improve the dyeability of polyamide. The compounds include a compound containing a sterically hindered amine group, trimesic acid trialkylamide, pyromellitic acid tetra-alkylamide, triamino substituted triazine, a hydroxyl-reactive dyestuff. Compounds containing a sterically hindered amine group are preferably ##STR1## where R is hydrogen, C.sub.1-8 alkyl, C.sub.1-8 alkoxy, or COR.sub.5.

WIPO publication WO 97/43335 discloses a stabilizer for polyamide having the structure: ##STR2## Polyamide polymers are characterized by high tensile strength, Young's modulus and abrasion resistance, however polyamides require stabilization against thermo-oxidative and photodegradation to sustain these properties in demanding use applications. Polyamides must accept lightfast dyeing systems in addition. Discoloration of the resin matrix is highly critical and may cause shade changes in colored articles, such as fibers and moldings of polyamide polymers. Therefore, further improvement in the stabilization systems for these materials is desirable in end uses such as fibers, and generally in high temperature processing of polyamide melts.

The polyamide structure contains labile hydrogens and exert reductive or basic properties which are problematic from the standpoint of colorants. For example, in polyamide, organic red dyes undergo significant loss of shade upon thermal processing at the typical melt processing temperatures for polyamide. It would be desirable to minimize the tendency of polyamide to exert this influence on dyes while at the same time protecting the polymer matrix from loss of the desired physical properties.

The evolution of polyamide stabilization system s has advanced from earlier recommended hindered phenolic types, for example Irganox.RTM. 1098, to a combination of an antioxidant and a benzotriazole, such as the combination of lrganox.RTM.1098 with Tinuvin.RTM. 234, well established I the art. Lightfast and photochemically stable dyed polyamide fibers containing oxalic acid di-aryl amides with a copper complex are known, for example from the aforementioned U.S. Pat. No. 5,338,319. These are applied in aqueous dye baths. In contrast, the present invention is directed to additives which are dispersed within the polyamide matrix by melt-processing at high temperatures above the glass transition, as in extrudates or moldings. WO 97/43335 provides a stabilizer which can be added in the melt to polyamide and improves heat stability, light stability, chemical stability, and dye affinity, however improvements are still sought.

Highly synergistic stabilization systems for polyamides have been found which exhibit unexpected further improvements for polyamide. These systems exhibit significant technical and economic advantages, even at low effective additive concentrations.

SUMMARY OF INVENTION

In accordance with the fundamental aspect of the invention there is provided a process for stabilizing polyamide polymers against the damage effected by light, heat and/or oxidation, even without the use of copper complexes, by using specified additives which act synergistically in polyamides. The process comprises incorporating the additive combinations selected from (I), (II) or (Ill), under melt processing conditions with polyamide, and forming a uniform and intimate mixture. The components, on a weight basis (I), (II) and (III) are:

(I) from 0.01% to 1% of a sterically hindered phenyl phosphonite (Ia) with from 0.05% to 5% of a oxanilide, (lb), preferably non-hydroxy substituted, (together (Ia)+(Ib)), or (Ia) together with from 0.05 to 5% of an aromatic di- or tri- carbonyl (ester) amide compound, defined below containing at least one, and preferably two hindered amine moieties (Ic) in particular relationship with the carbonyl group, (together (Ia)+(Ic)). The weight ratio of (Ia) to (Ib) is from 1:3 to 1:10 and the weight ratio of (Ia) to (Ic) is from 1:3 to 1:10. The preferred weight ratios for both (Ia) to (Ib) as well as (Ia) to (Ic) is 1:3 to 1:6. The more preferred weight ratios of (Ia) to (Ib) and (Ia) to (Ic) are from 1:4 to 1:6 and most preferably 1:5;

(II) from 0.05 to 5% of an oxanilide (IIa), preferably non-hydroxy substituted, together with from 0.05 to 5% of an aromatic di- or tri- carbonyl (ester) amide compound containing at least one and preferably two hindered amine moieties (IIb), (together (IIa)+(IIb)). The weight ratio of (IIa) to (IIb) is from 1:5 to 5:1, preferably 1:3 to 3:1, and most preferably 1:1; and

(III) from 0.01% to 1% of a sterically hindered phenyl phosphonite, from 0.05 to 5% of an oxanilide, preferably non-hydroxyl substituted, and from 0.05 to 5% of an aromaticdi-or tri- carbonyl (ester)amide compound containing at least one, preferably two hindered amine moieties. The weight ratio of phosphonite to oxanilide is from 1:5 to 5:1, preferably 1:5 to 1:1, and most preferably 1:5 to 1:3

wherein the percentages represents grams of additives used per hundred grams of polymer.

The invention defines the basis, furthermore, for the effective and unexpected improved efficiency in the use of organic colorants with polyamide, such as solvent soluble, or polymer soluble organic dyes, for example, acid dispersed dyes, azo and diazo dyes, phthalocyanine blues and greens, diarylide yellows, perylenes, quinacridone, and the like. Therefore another aspect of the invention is a colored manufactured article such as a molding, extruded article or fiber of polyamide containing the stabilizer system (I), (II) or (III), in combination with one or more organic colorants.

DETAILED DESCRIPTION OF INVENTION

Polyamides stabilized according to the invention include the synthetic aliphatic, semi-aromatic and aromatic polyamides. Examples include nylon 6, nylon- 6.6, nylon-6.10, nylon 6.11, nylon-6.12, nylon 11, nylon 12, and copolymers such as nylon-6.6/6, nylon-6.6/6.10, 6/11, 6/12; polyether-polyamide block copolymers, poly(m-phenyleneisophthalamide), poly(p-phenyleneterephthalamide), and the like all of which are commercially available from a variety of sources. The method includes using the stabilization system with formulated polyamides, including conventional impact toughened polyamide, and reinforced polyamides containing glass fiber, mineral and glass/mineral combinations. The invention can be practiced with polyamides regardless of the polymer morphology. Amorphous, semi-crystalline or highly crystalline polyamides as well as blends of different crystallinity are benefited. Commercially available polyamide resins are known from sources such as BASF, DSM, Evansville, Ind., E I duPont de Nemours, Wilmington, Del.; formulated polyamides are available, for example, from Ferro Corp., Cleveland, Ohio, Hanna Engineered Materials, Bethlehem, Pa., Hutls America, Somerset, N.J., and A. Schulman, Akron, Ohio; reinforced polyamides are available from DSM RIM Nylon, Westlake, Ohio.

The following amounts of each component selected according to the invention are critical to synergistic improvements and are indicated as weight percentage representing grams of additives used per hundred parts of the polyamide. The invention can be practiced by incorporating the additive system directly into heated zones of a compounding extruder containing the polyamide to be stabilized or by first forming an intermediate masterbatch compound which contains the selected system in a carrier polymer which is a polyamide or a polymer which is intimately compatible with or dispersible in polyamide, or by other methods commonly used in the art to incorporate additives into polymers.

According to the selection of ((Ia)+(Ib)) above, from 0.01 to 1% of sterically hindered phenyl phosphonite is used, preferably the usage level is from 0.05% to 0.5% with the most preferred level from 0.05 to 0.2% of the phosphonite. The specified oxanilide used in either (I) or (II) is possible at a level of from 0.05% to 5%, preferably at a level of from 0.2% to 2%, and most preferably at a level of from 0.3% to 1%.

The aromatic di-carbonyl (ester)amide compound containing one or more piperidine groups is used generally in an amount of from 0.05% to 5%, preferably from 0.2% to 2% and most preferably from 0.3% to 1%.

According to (I) above the weight ratio of (Ia) to (Ib) or the ratio of (Ia) to (Ic) is 1:3 to 1:10, especially 1:4, 1:5, 1:6, 1:7, 1:8, and 1:9. According to ((Ila)+(IIb)) above, the weight ratio of (IIa) to (IIb) is from 1:5 to 5:1, especially 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, and 4:1, with the most preferred weight ratio of from 1:2 to 2:1.

The sterically hindered phenyl phosphonites used herein have the following general structure: ##STR3## wherein each R is independently selected from unsubstituted phenyl or a substituted phenyl with one, two or three C.sub.1-2 alkyl groups, such as methyl, ethyl, propyl, butyl, isobutyl, tert.-butyl groups, linear or branched pentyl, hexyl, octyl or nonyl groups or cumyl moieties.

Preferably R is a di-tert.-butyl phenyl group (most preferably at the 2,4-position), n is 0 or 1 and A is a predominantly aromatic mono- or difunctional C.sub.5 to C.sub.30 moiety optionally containing further heteroatoms, for example is a monofunctional or difunctional residue of a phenyl, diphenylether, diphenyl, diphenylmethane, or dibenzofuran group. Most preferably A, a diphenyl residue, n=1 and R is a 2,4-di-tert-butyl phenyl group or 2,4-di-tert-butyl-5-methyl phenyl group. The term "sterically hindered" refers to the presence of at least one substituent different from hydrogen, in ortho position to the functional center of the respective group.

The most preferred phenyl phosphonites are the condensation products of sterically hindered alkyl phenols, such as 2,4-di-tertiary butyl phenol, with the Friedel-Crafts reaction product of diphenyl and PCl.sub.3. An exemplary condensation product A-2 has the following structure: ##STR4##

The preferred sterically hindered phosphonite containing A-2 as main component is Sandostab.RTM. P-EPQ available from Clariant.

The oxalic acid di-aryl amides (oxanilides) used in the invention include, for example, compounds having the following structures: ##STR5## R.sub.1 and R.sub.2 are each independently of the other hydrogen, unsubstituted C.sub.1 -C.sub.18 alkoxy or C.sub.1 -C.sub.18 alkoxy which is substituted by halogen, hydroxy, C.sub.1 -C.sub.5 alkoxy, carboxyl groups, carbamyl groups or C.sub.1 -C.sub.12 alkoxycarbonyl groups, or is C.sub.3 -C.sub.5 alkenyloxy, unsubstituted benzyloxy or benzyloxy which is substituted by halogen or C.sub.1 -C.sub.5 alkyl, aliphatic acyloxy containing up to 18 carbon atoms, unsubstituted benzoyloxy or benzoyloxy which is substituted by halogen or C.sub.1 -C.sub.4 alkyl, or a radical --A--SO.sub.3 M, wherein A is a direct bond or a divalent radical of formula --O--Q-, and Q is unsubstituted or hydroxy-substituted C.sub.1 -C.sub.6 alkylene, M is hydrogen or alkali metal, R.sub.3 and R.sub.4 are each independently of the other hydrogen, halogen, C.sub.1 -C.sub.12 alkyl, haloalkyl, phenyl or phenyl-C.sub.1 -C.sub.5 alkyl, or two radicals R.sub.3 and/or R.sub.4 in ortho-position each together form a fused 6-membered aromatic carbon ring, and wherein m and n are 1 or 2 and p and q are 1, 2 or 3.

The preferred oxalic acid di-aryl amide is non-hydroxy substituted, for example: ##STR6## wherein R.sub.1 and R.sub.2 are each independently, identical or different substituents selected from hydrogen, linear, branched or cyclic alkyl or alkoxy groups having from 2 to 12 carbon atoms and from 1 to 4 oxygen atoms; preferably one R.sub.1 group on each ring is hydrogen, one R.sub.2 group is ethoxy and the other is a C.sub.2 to C.sub.12 alkyl group, both located at the 5 position of each ring.

The most preferred oxanilides have such structures as: ##STR7##

Commercially available non-hydroxyl substituted oxanilides include Sanduvor.RTM. VSU and 3206, and Tinuvin.RTM. 312 and 315, and the like. The most preferred oxanilide is commercially available from Clariant as Sanduvor.RTM. VSU.

The process according to (Ib) or (II) includes the use of an aromatic di- or tri-carbonyl compound which is an aromatic amide or aromatic ester-amide (aromatic (ester)amide) containing at least one hindered amine group adjacent to a carbonyl carbon. The structure is given by: ##STR8## where p 0 or 1, and R.sup.1 and R.sub.2 is defined as for (A) and (B) below.

When p is 0, the aromatic di-carbonyl (ester)amide is (A) and (B), ##STR9## wherein at least one of R.sub.1 and R.sub.2 are independently, identical or different sterically hindered amino groups adjacent to the carbonyl group and the group(s) which is not a hindered amino group includes independently of the other, unsubstituted C.sub.1 -C.sub.18 alkoxy or alkamino which may optionally be substituted by halogen, hydroxy, C.sub.1 -C.sub.5 alkoxy, carboxyl groups, carbamyl groups or C.sub.1 -C.sub.12 alkoxycarbonyl groups, or is C.sub.3 -C.sub.5 alkenyloxy, unsubstituted benzyloxy or benzyloxy which is substituted by halogen or C.sub.1 -C.sub.5 alkyl, aliphatic acyloxy containing up to 18 carbon atoms, unsubstituted benzoyloxy or benzoyloxy which is substituted by halogen or C.sub.1 -C.sub.4 alkyl. Exemplary hindered amino groups include those such as (i)-(ix), ##STR10## wherein R and R' are independently either hydrogen, C.sub.1-12 alkyl, C.sub.1-8 alkoxy, or --COR.sub.3, where R.sub.3 is hydrogen, C.sub.1-6 alkyl, phenyl, --COO(C.sub.1-4 alkyl) or NR.sub.15 R.sub.16, where R.sub.15 and R.sub.16 are independently hydrogen, C.sub.1-12 alkyl, C.sub.5-6 cycloalkyl, phenyl or (C.sub.1-12 alkyl)phenyl; or R.sub.15 and R.sub.16 together with the N-atom to which they are attached form a five- to seven-membered ring which may contain an additional N- or O-atom (preferably forming a piperidine or morpholine ring); n is 0 or 1 (structure iv); Y is the group --NCO or --OCN, where CO forms part of the cyclic structure; each R.sub.6 of structure (iii) independently is selected from hydrogen, C.sub.1-12 alkyl or phenyl provided only one R.sub.6 can be phenyl, or both groups R.sub.6 together form the group --(CH.sub.2).sub.m --; where m is 2 to 11, --C(CH.sub.3).sub.2 --, --C(CH.sub.3).sub.2 --CH.sub.2 --CH.sub.2 -- or --C(CH.sub.3)CH.sub.2 CH.sub.2 CH(CH.sub.3)--.

R.sub.1 or R.sub.2 groups other than hindered amino groups, include, independently C.sub.1-20 alkyl, C.sub.1-20 alkoxyalkyl, C.sub.1-20 hydroxyalkyl, C.sub.1-20 alkenyl, substituted C.sub.1-20 alkenyl groups, C.sub.1-20 -alkoxy-C.sub.1-20 -alkyl groups, C.sub.1-20 -oxy-N-C.sub.1-20 -alkyl groups, C.sub.7 -C.sub.9 phenylalkyl unsubstituted or mono-, di- or tri-substituted on the phenyl by C.sub.1 -C.sub.4 alkyl; or aliphatic or aromatic C.sub.1 -C.sub.10 acyl.

A preferred aromatic dicarbonyl compound is (B'): ##STR11## wherein R.sub.2 ' is independently C.sub.1-20 alkyl, C.sub.1-20 alkylamino, optionally further substituted C.sub.1-20 alkoxyalkyl, C.sub.1-20 hydroxyalkyl, C.sub.1-20 alkenyl, substituted C.sub.1-20 alkenyl groups, C.sub.1-20 -alkoxy-C.sub.1-20 -alkyl groups, C.sub.1-20 -oxy-N-C.sub.1-20 -alkyl groups, -N-cyclic-C.sub.1-20 -alkyl groups, and cyclic-N-C.sub.1-10 -alkyl groups --COR.sub.4, where R.sub.4 is hydrogen, C.sub.1-6 alkyl, phenyl, --C.sub.1-20 COO(H or C.sub.1-4 alkyl).

More preferred is the aromatic dicarbonyl compound (B"): ##STR12## wherein each R in B' and B" is independently either hydrogen, C.sub.1 -C.sub.18 alkyl, O, OH, CH.sub.2 CN, C.sub.1 -C.sub.18 alkoxy, alkoxyalkylenoxyalky, C.sub.5 -C.sub.12 cycloalkoxy, C.sub.3 -C.sub.6 alkenyl, C.sub.7 -C.sub.9 phenylalkyl unsubstituted or mono-, di- or tri-substituted on the phenyl by C.sub.1 -C.sub.4 alkyl; or aliphatic or aromatic C.sub.1 -C.sub.10 acyl, or --COR.sub.4, where R.sub.4 is defined as above. Examples of alkyl groups having not more than 20 carbon atoms are methyl, ethyl, propyl, isopropyl, butyl, 2-butyl, isobutyl, t-butyl, pentyl, 2-pentyl, hexyl, heptyl, octyl, 2-ethylhexyl, t-octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, hexadecyl and octadecyl; exemplary branched alkyl groups are isopropyl, isobutyl, t-butyl, 2,2-dimethylpropyl, 2-methylpropyl, cyclohexylmethyl, cyclohexylethyl, 2-ethylhexyl, 3,5,5-trimethylhexyl, 2-hexylundecyl, and 5,7,7-trimethyl-2-(1,3,3-trimethylbutyl)hexyl; exemplary cyclic alkyl groups are cyclohexyl.

Examples of alkoxy(alkyl) groups are methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, pentoxy, isopentoxy, hexoxy, 2-ethylhexyloxy, heptoxy, octoxy, decyloxy, dodecyloxy, tetradecyloxy, hexadecyloxy and octadecyloxy, nonadecyloxy. Preferred alkoxy examples are C.sub.6 -C.sub.12 alkoxy, in particular heptoxy and octoxy.

Examples of the alkoxyalkylenoxyalkyl groups are C.sub.1-20 -alkoxy-C.sub.1-5 -alkylenoxy-C.sub.1-20 -alkyl groups. The C.sub.1-20 -alkoxy groups and C.sub.1-20 -alkyl groups include those mentioned as examples of the alkoxyalkyl groups. Examples of the C.sub.1-5 -alkylenoxy groups include ##STR13##

Particularly, C.sub.1-12 -alkoxy-C.sub.1-5 -alkylenoxy-C.sub.1-12 -alkyl groups are more preferred.

Examples of C.sub.5 -C.sub.12 cycloalkyl R.sub.3 unsubstituted or mono-, di- or tri-substituted by C.sub.1 -C.sub.4 alkyl are cyclopentyl, methylcyclopentyl, dimethylcyclopentyl, cyclohexyl, methylcyclohexyl, dimethylcyclohexyl, trimethylcyclohexyl, t-butylcyclohexyl, cyclooctyl, cyclodecyl and cyclododecyl. Unsubstituted or substituted cyclohexyl is preferred.

Examples of C.sub.5 -C.sub.12 cycoalkoxy R.sub.1 are cyclopentyl, cyclohexoxy, cycloheptoxy, cyclooctoxy, cyclodecyloxy and cyclododecyloxy, including as applied to R.sub.3. Cyclopentoxy and cyclohexoxy are preferred.

Examples of C.sub.3 -C.sub.6 alkenyl are allyl, 2-methylallyl, butenyl and hexenyl, 3-butenyl, and 10-undecenyl; examples of branched alkenyl groups are 1-methyl-2-propenyl, 3-methyl-3-butenyl. Allyl is preferred.

Examples Of C.sub.7 -C.sub.9 phenylalkyl unsubstituted or mono-, di- or tri-substituted on the phenyl by C.sub.1 -C.sub.4 alkyl are benzyl, methylbenzyl, dimethylbenzyl, trimethylbenzyl, t-butylbenzyl and 2-phenylethyl. Benzyl is preferred.

Examples of aliphatic and aromatic C.sub.1 -C.sub.10 acyl are C.sub.1 -C.sub.8 alkanoyl or C.sub.3 -C.sub.8 -alkenoyl, for example, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, benzoyl, hexanoyl, heptanoyl, octanoyl, 2-ethylhexanoyl, acryloyl and crotonyl. Acetyl is preferred.

When more than one hindered amine group is present they can be identical or different, and preferably are identical hindered amine groups.

Exemplary aromatic tri-carbonyl compounds are the following C and C', ##STR14## wherein R is defined as in B"

The most preferred aromatic (ester) amide is an aromatic di-amide having the following structure: ##STR15## and is commercially available as NYLOSTAB S-EED from Clariant.

The aromatic di-or tri-carbonyl (ester)amide with at least one hindered amino group can have remaining non-hindered amino groups R.sub.1 and R.sub.2 groups in structures (A) or (B) selected from radicals of substituted or unsubstituted linear or branched alkyl amine(s) or alkoxy groups having 8 to 20 carbon atoms, such as octyl amine and dodecylamine or the corresponding alkohols; substituted or unsubstituted aromatic amine, aminocarboxylic acid or corresponding lactam; also oligomers of about 3 to 20 repeating units of the aromatic dicarbonyl and a diamine or aminocarboxylic acid.

Conventional additives may optionally be present in the polyamide which is modified according to the invention, for example, primary thermal stabilizers, light stabilizers, lubricants, pigments, reinforcing and/or non-reinforcing fillers, and the like. Conventional primary antioxidants are suggested for inclusion herein at conventional amounts. Antioxidants include, for example alkylated monophenols, alkylated hydroquinones, alkylidenebisphenols, hindered alkyl benzyl compounds, acylaminophenols, esters of .beta.-(3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid, and the like which are disclosed in U.S. Pat. No. 5,051,459 incorporated herein by reference. A commercially available antioxidant is IRGANOX.RTM. 1098 from Ciba Specialty Chemicals.

UV-absorbers include, for example, the class of benzotriazoles such as 2-(2'-hydroxphenyl)benzotriazoles, for example 2-(2'-hydroxy-5'-methylphenyl)benzotriazole, 2-(3',5'-di-tert-butyl-2'-hydroxyphenyl)benzotriazome, 2-(5'-tert-butyl-2'-hydroxyphenyl)-benzotriazole, 2-[2'-hydroxy-5'-(1,1,3,3-tetramethylbutyl)phenyl]benzotriazole, 2-(3'-5'-di-tert-butyl-2'-hydroxyphenyl)-5-chlorobenzotriazole, 2-(3'tert-butyl-2'-hydroxy-5'-methyl-phenyl)-5-chlorobenzotriazole, 2-(3'-sec-butyl-5'-tert-butyl-2'-hydroxyphenyl)benzotriazole, 2-(2'-hydroxy-4'-octyloxy-phenyl)benzotriazole, 2-(3',5'-di-tert-amyl-2'-hydroxy-phenyl)-benzotriazole, 2-(3',5'-bis(1,1-dimethylbenzyl)-2'hydroxyphenyl)benzotriazole; mixture of 2-(3'-tert-butyl-2'-hydroxy-5'-(2-octyloxycarbonylethyl)phenyl)-5-chlorobe nzotriazole, 2-(3'-tert-butyl-5'-[2-(2-ethyl-hexyloxy)carbonylethyl]-2'-hydroxyphenyl)- 5-chlorobenzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-(2-methyxycarbonylethyl)phenyl)-5-chloroben zotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-(2-methoxycarbonylethyl)phenyl)benzotriazol e, 2-(3'-tert-butyl-2'-hydroxy-(2-octyloxy-carbonylethyl)phenyl)benzotriazole , 2-(3'-tert-butyl-5'-[2-(2-ethyl-hexyloxy)carbonylethyl]-2'-hydroxyphenyl) -benzotriazole, 2-(3'-dodecyl-2'-hydroxy-5'-methylphenyl)-benzotriazole, and 2-(3'-tert-butyl-2'-hydroxy-5'-(2-isoocytyloxycarbonylethyl)-phenylben zotriazole, 2,2'-methylenebis[4-(1,1,3,3-tetramethylbutyl)-6-benzotriazol-2-ylphenol]; transesterification product of 2-[3'-tert-butyl-5'(2-methoxycarbonylethyl)-2'-hydroxyphenyl]benzo-triazol e with polyethylene glycol 300; [R--CH.sub.2 CH.sub.2 --COO(CH.sub.2).sub.3 ].sub.2 where R=3'-tert-butyl-4'-hydroxy-5'-2H-benzotriazol-2-ylphenyl; [R-CH.sub.2 CH.sub.2 -COO(CH.sub.2 CH.sub.2 O)N/.sub.2 ].sub.2 where n=1 to 5 and R=3'-tert-butyl-4'-hydroxy-5'-2H-benzotriazol-2-ylphenyl. A suitable commercially available benzotriazole is Norbloco.RTM. 7966, and 6000, from Jensen Pharma., Inc. Benzotriazoles are disclosed in U.S. Pats. 4,335,155, 4,405,749, and 4,528,311 which are incorporated herein by reference.

Further UV-absorbers include the class of ortho-hydroxyphenyl triazines such as 2-(2-hydroxyphenyl)-1,3,5-triazines, for example 2,4,6-tris(2-hydroxy-4-octyloxyphenyl)-1,3,5-triazine, 2-(2-hydroxy-4-octyloxyphenyl)-4,6-bis-(2,4-dimethylphenyl)-1,3,5-triazine , 2-(2,4-dihydroxyphenyl)-4,6-bis-(2,4-dimethylphenyl)-1,3,5-triazine, 2-(2,4-dihydroxy-phenyl)-4,6-bis-(2,4-dimethylphenyl)-1,3,5-triazine, 2,4-bis(2-hydroxy-4-propyloxyphenyl)-6-(2,4-di-methylphenyl)-1,3,5-triazin e, 2-(2-hydroxy-4-octyloxyphenyl)-4,6-bis(4-methyl-phenyl)-1,3,5-triazine, 2-(2-hydroxy-4-dodecycloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazi ne, 2-[2-hydroxy-4-(2-hydroxy-3-butyloxypropyloxy)phenyl]-4,6-bis(2,4-di-methy lphenyl)-1,3,5-triazine and 2-hydroxy-4-(2-hydroxy-3-octyloxypropyloxy)-phenyl]-4,6-bis(2,4-dimethylph enyl)-1,3,5-triazine. A suitable commercially available triazine is CYASORB.RTM. 1164, from Cytec Corp.

Hindered benzoate UV-absorbers include commercially available materials such as CYASORB(.RTM. 2908 from Cytec, and FERRO.RTM. AM 340 from Ferro Corp.

Further, in this specification, where a range is given, the figures defining the range are included therein.

Further, any group capable of being linear, branched or cyclic is linear, branched or cyclic.

For the avoidance of doubt, in this specification tert-butyl means tertiary butyl or C(CH.sub.3).sub.3.

PATENT EXAMPLES This data is not available for free
PATENT PHOTOCOPY Available on request

Want more information ?
Interested in the hidden information ?
Click here and do your request.


back